Getting the Most From an Energy Audit

Ryan Merkin, M.S., LEED AP
Steven Winter Associates, Inc.
Building Systems Consultants - Founded 1972

- Energy Efficiency
- Advanced Building Systems
- Indoor Environmental Quality (IEQ)
- Systems Engineering and Optimization

Integrated “Whole Building” Approach
Session Overview

• The Audit Process
• Benchmarking and Metrics
• Envelope
• Heating
• Domestic Hot Water
• Lighting
• Payback Analysis
Auditing Process: Preparation

• Previous Audit
• Previous PNA
• Utility Data (at least 1 year)
• Building plans
• Preparation of Site
 – Access to boiler room, roof, common areas
 – Access to apartments
Auditing Process: Interview

• Energy Auditor should spend at least a half hour getting to know the building

• Typical Questions
 – Recurring issues?
 – Tenant complaints?
 – Repair records
 – Recent and planned capital improvements
 – Noise and odors
 – System balancing
Which Building is Most Efficient?

First ES MF Bldg ➔

First LEED MF in ➔ US

1972 MF Milwaukee WI ➔
Before the Audit: Benchmarking

Building Energy Quotient (BEQ)

Net-Zero Energy

- **A**
- **A+**
- **High Performance**
- **A**
- **Very Good**
- **B**
- **C**
- **D**
- **Poor**
- **F**

Statement of Energy Performance

Margrave High School

Building ID: 1027129

Date SEP Generated: March 30, 2004

Owner:
- **Address**: 1901 North Fort Myer Drive
- **City, State**: Arlington, VA 22209

Building Information

- **Building ID**: 1027129
- **Location**: 1901 North Fort Myer Drive
- **City, State**: Arlington, VA 22209

Facility Space Use Summary

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Area (ft²)</th>
<th>Number of Students</th>
<th>Number of PCs</th>
<th>Cooling Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Data Center</td>
<td>134</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>K-12 Schools</td>
<td>3,132,721</td>
<td>1,141</td>
<td>459</td>
<td>100</td>
</tr>
</tbody>
</table>

Site Energy Use Summary

- **Electricity (kWh)**: 6,040,891
- **Propane (kWh)**: 320,419
- **Natural Gas (kWh)**: 8
- **Total Energy (kBtu)**: 6,370,229

Results

- **Energy Performance Rating** (1-100): 94

- **Energy Intensity**
 - **Site (kBtu/ft²-yr)**: 17
 - **Source (kBtu/ft²-yr)**: 49.4

- **Emissions**
 - **CO₂ (1000 Btu/yr)**: 6,701
 - **SO₂ (1000 Btu/yr)**: 300
 - **NOₓ (1000 Btu/yr)**: 21

- **Energy Cost**
 - **Total Cost (dll/yr)**: $264,465
 - **Interest (dll/yr)**: $0.72

Environmental Criteria

- **Indoor air pollutants controlled**: Yes
- **Adequate ventilation provided**: Yes
- **Thermal conditions meet**: Yes
- **Adequate illumination provided**: Yes

Notes

1. Approval for ENERGY STAR must be submitted to USEPA within 6 months of the final audit date. Award of ENERGY STAR is not final until approval is received from USEPA.
2. Energy performance rating of 90 is the minimum approval rating for commercial eligible for ENERGY STAR.
3. Indoor environmental quality and indoor air quality is determined using Test Methods for Indoor Air Quality (TM90) by ASHRAE.

Community Planning Development

Slide 7
Benchmarking: Online Tools

All Developments

<table>
<thead>
<tr>
<th>Name</th>
<th>Full-Year Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrtle Ave</td>
<td>59,840</td>
</tr>
<tr>
<td>MLK</td>
<td>55,574</td>
</tr>
<tr>
<td>Dunn Rockaway</td>
<td>46,672</td>
</tr>
<tr>
<td>Dunn Atlantic</td>
<td>38,798</td>
</tr>
<tr>
<td>The Andrew</td>
<td>31,027</td>
</tr>
<tr>
<td>Eltona Apartments</td>
<td>30,571</td>
</tr>
<tr>
<td>Executive Towers</td>
<td>4,476</td>
</tr>
<tr>
<td>585 Sixth Ave.</td>
<td>Not tracking gas</td>
</tr>
<tr>
<td>Hughes Gardens</td>
<td>No data available</td>
</tr>
<tr>
<td>El Jardin de Selene</td>
<td>Less than 1 year of data</td>
</tr>
<tr>
<td>Fortune Society</td>
<td>Less than 1 year of data</td>
</tr>
<tr>
<td>Liberty Apartments</td>
<td>Less than 1 year of data</td>
</tr>
</tbody>
</table>
Benchmarking: DIY

A Top 10 Owner of Multifamily Building in NYC
Benchmark Targets

<table>
<thead>
<tr>
<th>Category</th>
<th>Target</th>
<th>Critical Action Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td><10 BTU/FT2/HDD</td>
<td>>15 BTU/FT2/HDD</td>
</tr>
<tr>
<td>Electric Use</td>
<td><4-5 kWh/FT2/YR</td>
<td></td>
</tr>
<tr>
<td>Water Use</td>
<td><50 gal/person/day OR < 100 gal/bedroom/day</td>
<td>>65 gallons/person/day</td>
</tr>
<tr>
<td>Hot Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resident Complaints</td>
<td>No quantitative target</td>
<td>You’ll know it</td>
</tr>
</tbody>
</table>
Scoping Before the Audit

• Interviews – Property Mgmt, Operators
 o Goals of audit and how they related to operations
 o O&M issues > Energy issues

• Benchmarking Complete
 o Repair bills can further justify improvements

• Scoping Audit
 o Building a plan for testing and diagnostics
 o Retrieve blueprints/plans if possible
Before we step foot in a building:

- Open Windows in Winter
- Window conditions
- Air conditioners
- Façade conditions
- Exterior lighting
- Cleanliness
- Exterior doors
- Trash chute vent
The Audit: Envelope Diagnostics

- Use Your Eyeballs
 - Weatherstripping
 - Caulking
 - A/C Covers
- Blower Door Testing
- Infrared Scan (seasonal)
- Low-e checker
Envelope: Blower Door Testing

Project Details:

<table>
<thead>
<tr>
<th>Location</th>
<th>Floor Area in sq ft</th>
<th>Volume in cu ft</th>
<th>Outdoor Temp (F)</th>
<th>Fan Position</th>
<th>Wind Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>924</td>
<td>8316</td>
<td>45</td>
<td>Depress</td>
<td>Depress</td>
</tr>
</tbody>
</table>

Analysis:

<table>
<thead>
<tr>
<th>House Pressure (Pa)</th>
<th>Fan Pressure (Pa)</th>
<th>Plate Position</th>
<th>Flow Rate (cfm)</th>
<th>Temp Corr Fl (cfm)</th>
<th>Log (HousePress)</th>
<th>Log (Flowrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.4</td>
<td>156.7</td>
<td>1</td>
<td>518.5</td>
<td>526.1</td>
<td>1.676</td>
<td>2.721</td>
</tr>
<tr>
<td>49.1</td>
<td>166.9</td>
<td>1</td>
<td>535.1</td>
<td>543.0</td>
<td>1.691</td>
<td>2.735</td>
</tr>
<tr>
<td>51.8</td>
<td>175.1</td>
<td>1</td>
<td>548.1</td>
<td>556.2</td>
<td>1.714</td>
<td>2.745</td>
</tr>
<tr>
<td>53.9</td>
<td>181.6</td>
<td>1</td>
<td>558.2</td>
<td>566.4</td>
<td>1.732</td>
<td>2.753</td>
</tr>
<tr>
<td>57.1</td>
<td>197</td>
<td>1</td>
<td>581.4</td>
<td>588.9</td>
<td>1.757</td>
<td>2.771</td>
</tr>
</tbody>
</table>

Regression Analysis:

- **Equation:** \(y = 0.5811x + 1.7491 \)
- **R²:** 0.9872
- **From Regression:**
 - CFM\(_{50}\): 545
 - ACH\(_{50}\): 3.93
 - ACH\(_{25}\): 0.23
 - EqL\(_{A}\): 35.6 in\(^2\) (4 Pa)
 - EqL\(_{A}\): 62.9 in\(^2\) (10 Pa)
- **Leakage Ratio:** 0.186109439 CFM\(_{50}\)/ft\(^2\) surface area
- **ELA (in\(^2\)/1008 ft\(^2\)):** 1.22
Blower Door Diagnostics
Infrared Diagnostics

• Diagnose and confirm insulation issues/installation
The Audit: Roof

- Open louvers at top of stairwell
- Elevator room venting
- Compactor Shaft
- Roof surface
- Roof cavity insulation
- Roof cavity venting
- Parapet condition
- Drainage
Envelope Recommendations

High Priorities

- Weatherstripping
- Airsealing (Energy/O&M/H&S)
 - Stairwell Venting
 - AC Covers
 - Penetrations
- Roof/cavity Insulation
Low Priorities

• Wall Insulation
 – 1-2” of cellulose or foam can go a long way

• New Windows
 – Typically makes sense after 20+ years
 – New units should NFRC rating
 • U-value < 0.5 for aluminum frame
 • U-value < 0.32 (ENERGY STAR) for other types
 • SHGC vary by region
The Audit: Rooftop Fans

Can be big savings opportunity

- What function do they serve
- Continuous operation
- Are they running?

- Fanflow testing
- Shaft construction
- Register condition
Ventilation: Beware the Gap
Exhaust CFM at Each Floor of a 9-story Building

- **9th Floor**: Over-ventilation (energy waste)
- **8th Floor**: Over-ventilation (energy waste)
- **7th Floor**: Under-ventilation (Potential indoor air quality problems)
- **6th Floor**: Under-ventilation (Potential indoor air quality problems)
- **5th Floor**: Under-ventilation (Potential indoor air quality problems)
- **4th Floor**: Under-ventilation (Potential indoor air quality problems)
- **3rd Floor**: Under-ventilation (Potential indoor air quality problems)
- **2nd Floor**: Under-ventilation (Potential indoor air quality problems)
- **1st Floor**: Under-ventilation (Potential indoor air quality problems)

30 CFM = SWA Recommended Ventilation Rate

Bathroom Ventilation

Kitchen Ventilation
Advanced Measures: IAQ

The Central Ventilation Retrofit

• Test flows
• Clean shaft
• Seal shaft
• Seal registers at sheetrock
• CAR Dampers (auto balancing)
• New direct-drive fans (less maintenance)
Ventilation: Solutions
The Audit: Heating Systems

• If atmospheric, look to replace
 – Condensing units do not retrofit well

• **Combustion Efficiency Test** to quantify
 – Does not capture standby losses

• Boiler Controls
 – Steam settings
 – Burner modulation
The Audit: Heating Systems

Atmospheric = Inefficient

Solution = Sealed Combustion Boilers
The Audit: Heating Controls

• Heating Controls
 – Working Clock
 – Outdoor Reset
 • Know your heating season and regulations
 – Lead/Lag
The Audit: Heating Controls

Heating Adjustment

<table>
<thead>
<tr>
<th>Outdoor Sensor Setpoint - Outdoor Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

High-performance building = 4 minutes

Very poorly performing building = 55 minutes
The Audit: Heating Distribution

- Insulation
- Steam Venting
- Leaks, Buried Returns?
 - Water meter on boiler feed
- Radiator Conditions
 - Pitch
 - Air vents
 - Orifice plate retrofit?
- Baseboard Conditions
 - Heat output
 - Thermostatic Control and Valve
Heating Recommendations

Low-Cost

- Insulate bare pipes
- Set controls
- Address distribution (venting, TRV’s, pitching)
- Water meter on boiler feed
- Temperature gauge on flue

Investment-Grade

- New Boilers
- New Controls with wireless sensors
- VFD Control
The Audit: Domestic Hot Water

• Combustion Efficiency Test
 – Same rules apply: Atmospheric vs. Sealed Combustion

• Types of Systems
 – Tankless Coil
 – Standalone
 – Indirect
The Audit: Why Not Atmospheric?

Advantages

- Cheap.
- Cheap.
- Cheap.

Disadvantages

- Very inefficient.
- High standby losses when off due to open combustion chamber.
- Poor draft control.
- Many models have open pilot light.
Mixing Valve
- Upgrade to electronic
- Temperature gauge at outlet
- Thermostatic mixing valves fail in the HOT position; electronic mixing valves fail in the COLD position.

Setpoint
- Aim for 115 - 120°F
The Audit: Domestic Water

- Toilets
 1.3 gpf or less

- Showerheads
 1.75 gpm

- Faucet Aerators
 1.5 gpm Kitchen | 1.0 gpm lavatories

Look for EPA’s Watersense® Label
DHW: Recommendations

Low-Cost

• Insulate bare pipes
• Set controls
• Low-flow fixtures
• Temperature gauge on flue
• Upgrade mixing valve

Investment-Grade

• New Boilers
The Audit: Lighting

- Incandescents are no longer affordable
- Federal legislation phases out
- CFL’s replace all
- T8 Tubes & CFL’s
- LED Replacements
- Controls: Occupancy, Photosensor
- Some fixtures have controls built in!
Cost/Benefit of Lighting Retrofit

T12 Lamp Replacement
40W x 24/7/365 = 350 kWh
At $0.15/kWh = $52.56

LED
15W x 24/7/365 = 131 kWh
At $0.15/kWh = $19.71

Savings = $32.85

At $100 installed: Payback = 3.0 years | SIR = 1.7
T12 – 2 Lamp Replacement
86W x 24/7/365 = 753 kWh
At $0.15/kWh = $113.00

T8 Bi-level Fixture
62W x 4/7/365 = 90.5 kWh
19W x 20/7/365 = 138.7 kWh
At $0.15/kWh = $34.38

Savings = $78.62
At $300 installed: Payback = 3.8 years
The Cost/Benefit Analysis

• Payback
 – How long a measure takes to payback in years.

• S.I.R.
 – How many times does measure payback over lifespan.

• LCC
 – Provides net present value of investment.

• TRC
 – Includes total project, design, & program costs.
Energy Savings Opportunities

<table>
<thead>
<tr>
<th>Measure</th>
<th>Installed Cost</th>
<th>kWh Savings</th>
<th>Therm Savings</th>
<th>Annual Savings</th>
<th>Payback (yrs)</th>
<th>SIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Priority</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Apartment Low Flow Showerheads & Aerators</td>
<td>$9,030</td>
<td>0</td>
<td>22,247</td>
<td>$19,800</td>
<td>0.5</td>
<td>13.7</td>
</tr>
<tr>
<td>2. Common Area Lighting & Controls</td>
<td>$7,600</td>
<td>20,308</td>
<td>N/A</td>
<td>$2,640</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Medium Priority</td>
<td>$130,050</td>
<td>62,330</td>
<td>31,796</td>
<td>$36,401</td>
<td>3.6</td>
<td>2.4</td>
</tr>
<tr>
<td>1. Mechanical Rooftop Exhaust System Upgrade</td>
<td>$235,000</td>
<td>550,977</td>
<td>-27,646</td>
<td>$47,022</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2. Cogeneration</td>
<td>$148,000</td>
<td>0</td>
<td>15,710</td>
<td>$13,982</td>
<td>10.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>$529,680</td>
<td>633,615</td>
<td>42,107</td>
<td>$119,845</td>
<td>4.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Thank You!

Questions?

Ryan Merkin
rmerkin@swinter.com
212-564-5800 ext.116