

MANUFACTURED HOUSING CONSENSUS COMMITTEE

1.888.602.4663 | MHCC@HUD.GOV | MHCC@HOMEINNOVATION.COM

DRAFT MINUTES MHCC MEETING

September 23, 2021 October 8, 2021 October 20, 2021

DRAFT MINUTES MANUFACTURED HOUSING CONSENSUS COMMITTEE (MHCC) MEETING

September 23, 2021, October 8, 2021, & October 20, 2021

MEETING 1: Thursday, September 23, 2021

Call to Order

The Manufactured Housing Consensus Committee (MHCC) meeting was held on Thursday, September 23, 2021, via Zoom teleconference. Kevin Kauffman, Administering Organization (AO) Home Innovation Research Labs, called the roll and announced that a quorum was present. See <u>Appendix A</u> for a list of meeting participants.

Introduction and Opening Remarks

Teresa Payne, Administrator of the Office of Manufactured Housing Programs, and Designated Federal Officer (DFO) introduced Lopa Kolluri, Principal Deputy Assistant Secretary for the Office of Housing and the Federal Housing Administration.

This MHCC teleconference was focused on the MHCC's response and comments on a Department of Energy (DOA) proposed rule. A summary taken from the proposed rule is below:

"The U.S. Department of Energy ("DOE" or "the Department") is publishing a supplemental notice of proposed rulemaking ("SNOPR") to establish energy conservation standards for manufactured housing pursuant to the Energy Independence and Security Act of 2007. This document presents an updated proposal based on the 2021 version of the International Energy Conservation Code ("IECC") and comments received during interagency consultation with the U.S. Department of Housing and Urban Development, as well as from stakeholders. This proposal presents two potential approaches—one would provide a set of "tiered" standards based on the manufacturer's retail list price for the manufactured home that would apply the 2021 IECC-based standards to manufactured homes, except that manufactured homes with a manufacturer's retail list price of \$55,000 and below would be subject to less stringent building thermal envelope requirements based on manufacturer's retail list price. The alternative approach would apply standards based on the 2021 IECC to all manufactured homes, with no exceptions for building thermal envelope requirements based on manufacturer's retail list price."

Ms. Kolluri welcomed the members to the MHCC meeting. She noted that there is a crisis of affordable homes in the nation and that it will take us all to solve this crisis. Ms. Kolluri assured the MHCC members that this commission is committed to regular updates of the manufactured housing standards to keep up with site-built homes. She explained that this was the first of the three meetings to discuss DOE's notice of proposed rulemaking and the MHCC's review of the proposed rule is vital to the update process and the need to ensure that energy efficiency is balanced with affordability. Ms. Kolluri wished to provide ample time to MHCC to comment on these proposed regulations and asserted that they must continue to work together to maintain the safety and affordability of manufactured homes. She assured the MHCC that their work will make a difference and that manufactured housing is an important piece of the affordable housing puzzle. Ms. Kolluri closed her remarks by once again thanking the MHCC for their time and continued efforts.

Approval of the Minutes

MHCC Motion: Approve the Draft June 10, 2021 MHCC Meeting Minutes.

Maker: Tara BrunettiSecond: Catherine YieldingThe motion carried unanimously.

Teresa Payne thanked and appreciated everyone's flexibility and willingness to join the call and participate. Ms. Payne asserted that their office is excited to work with MHCC on the topic. This is an opportunity for HUD, the MHCC, and members of the public to submit their comments on the DOE Proposed Rule. She restated the dates of scheduled meetings on this topic to the members, October 8th and October 20th. She encouraged everyone to ask the hard questions and get the answered needed.

MHCC Chair, Mitchel Baker gave the opening comments. He welcomed the MHCC members and meeting participants to the teleconference, thanked for the public comments and encouraged members to register and participate on DOE's webinar on September 28,2021. Mr. Baker acknowledges that this will be a lot of work, but he looks forward to the productive discussions that will occur over the next three MHCC teleconferences.

Public Comment Period

See Appendix B for written public comments received prior to each meeting.

Mark Weiss, MHARR, in our review this proposed rule is constitutional overreach. He stated that back in 2016 when the last potential rule was floated the manufactured housing energy needs were lower than that of a site-built home. Manufactured housing has lower mean and median energy costs than site-built homes. The reality is that these proposed energy standards do not address a "problem" that needs to be fixed and the additional costs would be devastating. Mr. Weiss believes that the two tiers of the standard are arbitrary, along with lots of other areas in the proposed rule. Most double section and almost all single section homes will fall under tier 2 standards. He believes that implementing the proposed rule in those tier two homes could lead to a cost Increase around \$4800. These added costs would exclude more than 1 million potential home buyers. He stated that enforcing the 2021 NEC could lead to cost increases as high as \$13,000. These higher costs would exclude more than 5 million households based on NAHB cost exclusion methods, which are included in our written comments. This proposal must be fully examined and commented on, including reviewing all the data. MHCC should ask for an extension for the comment deadline to properly examine this rule. Mr. Weiss urged the MHCC to reject this proposal as he believes it would undermine the affordability of manufactured housing and would disproportionally affect smaller home builders. Mr. Weiss asked the vice chair, David Tompos, if he is going to recuse himself from voting on this topic, as NTA is owned by ICC. His final question did not receive an answer.

John Weldy, Clayton Homes, thanked everyone for their time. He stated that the Federal Standard provides a minimum standard which balances safety and energy consumption concerns with affordability and encourages DOE to be mindful of this balance as it finalizes its energy standards for Manufactured Housing. Mr. Weldy believes that imposing the proposed rule, without a thorough evaluation, will likely impact the affordability of homes, as well as the industry's ability to produce the number of homes to support the demand for affordable housing. The current insulation shortage, which is projected to continue for a few more years, must also be considered. As the HUD Code significantly increases insulation requirements at the same time as states adopt the 2021 IECC, the manufactured

housing industry will not be able to meet the increasing demand for affordable housing. Simply applying the 2021 IECC without considering current manufactured homes standard could be disastrous. Further, the ICC does not have a requirement to take into consideration cost or impact while writing model codes such as the 2021 IECC. Their goal is to simply propose code changes that increases the energy efficiency of the home by a certain percentage compared to the previous version. DoE should team up with HUD to develop additional standards.

Lesli Gooch, MHI, thanked everyone and appreciated comments from Ms. Kolluri about keeping manufactured homes a priority. This committee is crucial in the process of updating the energy standards of manufactured homes. There are serious concerns about the assumptions made in the outline of the technical support document from the DOE. MHI represent 85% of those that build HUD code manufactured homes. The impact of any proposed standard on the availability of manufactured homes is paramount. Ms. Gooch believes the proposed rule does not follow a proper cost benefit analysis. The Manufactured homes that are being built today are being manufactured with energy efficient features. Ms. Gooch stated that the MHCC should be the primary vessel to change the energy standards for manufactured homes, not the DOE. She expressed her concern that the proposed rule will make it near impossible to build homes in climate zones 2 and 3 and all the changes required by the rule will greatly change the cost and manner of construction, which would essentially remove manufactured homes as an affordable option. Miss Gooch believed the premise to base the tiered approach on retail cost is flawed and stated that the proposed rule does not include any enforcement provisions

Discussion of Department of Energy's Supplemental Notice of Proposed Rulemaking and Request for Comment – Energy Conservation Standards for Manufactured Housing

Jason McJury, HUD, provided background on the DOE proposed rule and informed the members of the important documents incorporated by reference or included in footnotes. Mr. McJury stated that the DOE proposed rule is separated into 8 section and proceeded to provide the summary of substance of each section.

Section 1 - Recap of the statute that established the statute to base the energy standards on the most recent version of the IECC. High level summary of the standards. It provides a summary of the cost benefit analysis.

Section 2 – Detailed intro. Addressing both legal and factual backings for DOE to establish the energy requirements. The approach as to how it was reached and a synopsis of IECC and history of rulemaking.

Section 3 – Detailed narrative of the proposed standards themselves. Included DOE's thought process and how it addressed affordability. Detailed discussion on the rulemaking process. Proposed rule for a test procedure and how to determine compliance and DOE will consider test procedures in the future. This section goes on to address certification, compliance, and enforcement. DOE did not provide guidance for enforcement but said they would be accepting comments on it. DOE will consult with HUD with any future rulemakings.

Section 4 – Detailed discussion of the economic analysis. Lots of data and background. Lots of tables that DOE published that identifies cost increases for each of the climate zones for each standard tier. Information pertaining to per home savings.

Section 5 – Impacts to the industry and smaller home builders.

Section 6 – Identifies public participation, this section contains 30 questions that DOE has specifically requested input for.

Section 7 – Is a formality.

Section 8 – Proposed regulatory text.

The members provided general comments on the proposed rule. Comments related to inaccurate representation of cost and use of incorrect inflation factors were made and concerns were raised if the members would have sufficient time to properly respond to the rule.

LUNCH BREAK

See <u>Appendix C</u> for the full MHCC Comments on the DOE SNOPR.

During this teleconference, the MHCC developed general comments on the DOE SNOPR and responses/comments to questions 1-10.

Public Comment Period

Mark Weiss, MHARR, thanked the committee on what has been a thoughtful discussion. He expressed their need to reference or build upon the MHCC comments and asked that the minutes be provided as quickly as possible.

Lesli Gooch, MHI, thanked everyone for their time. She appreciated Ms. Kolluri's comments that the administration is committed to get manufactured housing as an affordable option. Houses now are different then when the rule was created in 2016, the numbers need to all be updated to reflect modern data. Ms. Gooch believes that this rule is out of line with respect to materials and processes for manufactured housing. It is important to everyone to recognize that many manufactured homes are equivalent or better than site-built homes in terms of energy efficiency. Manufactured homes are the largest form of unsubsidized affordable housing. The price of these homes cannot keep increasing. Increasing the supply of affordable housing is critical. The law requires HUD to provide affordable homes. The energy standard should not be more efficient than site-built homes. To this date no jurisdiction has adopted the 2021 version of the IECC.

Wrap Up – DFO & AO

Kevin Kauffman announced the closing of comments and reminded the dates of future meetings to the members. DFO Payne appreciated everyone's attention on this topic and participation. Michael Baker also appreciated the member's work on all the sections and thanked them.

Adjourn

The motion to adjourn the meeting was carried.

MEETING 2: Friday, October 8, 2021

Call to Order

The Manufactured Housing Consensus Committee (MHCC) meeting was held on Friday, October 8, 2021, via Zoom teleconference. Kevin Kauffman, Administering Organization (AO) Home Innovation Research Labs, called the roll and announced that a quorum was present. See <u>Appendix A</u> for a list of meeting participants.

Introduction and Opening Remarks

Teresa Payne, Administrator of the Office of Manufactured Housing Programs, and Designated Federal Officer (DFO) welcomed the participants and thanked them for their time. Ms. Payne provided the background of the meeting. This is the second meeting for the MHCC to discuss and provide comments to the DOE on their proposed rule. She appreciated the hard work in the last meeting. The proposed rule has the potential to affect MHCC's mission, and it is necessary to provide comments to DOE. DOE held a meeting that was open to the public, which was scheduled for 5 hours but only lasted around 1 hour. Comments from MHCC will be submitted to the secretary of HUD, and with the help of the AO will be submitted to DOE. The next meeting for the MHCC on this topic is on the 20th of October, all meetings are scheduled from 10am -4pm and the meeting information for all 3 meetings are the same. Ms. Payne looked forward to a productive meeting.

MHCC Chair, Mitchel Baker gave the opening comments. He welcomed the MHCC members and meeting participants to the teleconference and thanked them for their time. He also thanked everyone who attended the DOE webinar on 23rd of September. Mr. Baker asserted that they had done some really good work so far and looked forward to submitting good comments to the DOE.

Public Comments Period

See Appendix B for written public comments received prior to each meeting.

Lesli Gooch, MHI, thanked everyone for their time. Ms. Gooch commended the MHCC team led by Ms. Teresa Payne. She expressed her delight that HUD has made sure that consultation is taking place. Formal comments about the DoE rule were submitted as MHI typically does prior to MHCC meetings. She assured that their Senior Vice President was working closely with the manufacturers and stated that they would continue sharing the technical concerns of the DOE proposed rule. Ms. Gooch expressed her concerns about the proposed rule and stated that it was flawed because the cost benefit analysis of DOE fails, and the homeowners will never get the return. She stated that it is important to consider the cost effectiveness along with the technical aspects of the components even though MHI supports energy conservation. Ms. Gooch stated that this rule does not work for factory-built homes but are more applicable to site-built homes.

Mark Weiss, MHARR, thanked everyone for their participance in the meetings. Mr. Weiss stated that a written comments were submitted to the MHCC. He apologized for the lengthy comments and proceeded to discuss the comments they will be submitting for the next meeting. He urged the members to not be misled by this tiered proposal and assured that it's not carved in stone. Tiered proposal is the alternative proposal to the one tier option. He insisted that the so-called two-tier system

is simply a redo of the 2016 proposed rule which is more stringent because the IECC codes are more stringent. Mr. Weiss also informed the MHCC members that MHARR filed for an extension on the deadline, which the DOE acknowledged receiving at the webinar, but has yet to formally respond to.

John Weldy, Clayton Homes, thanked everyone for their time. Mr. Weldy stated that his previous remarks were focused on evaluating the cost effectiveness of these updates. He expressed his concerns about the DOE proposed rule and explained why it misses the mark of balancing cost with effectiveness. The raw goods (e.g., fiberglass insulation) are under extraordinary restrain and the workforce and logistics cannot keep up with demand. The proposed rule would add a significant demand for insulation, a commodity which is already strained. Adding any code change which adds demand for fiberglass insulation, would have a ripple effect on the industry. No state has adopted the 2021 IECC. Only 13 states have adopted sections of the 2018 IECC standard, 19 states have adopted the 2012 IECC, and others go back to 2009. Requiring manufactured housing to be held to a higher standard than site-built homes, is against the goal of manufactured housing which balances performance with cost. The HUD energy standards haven't been updated since around 1994, and they need to be updated, but moving to the 2021 IECC is way too far of an update in one code cycle. Adoption for these code cycles is typically 3-5 years. Mr. Weldy asked the rule makers to take one step at a time and to restrain from jumping to more restrictive requirements than site-built homes. He believes that the best outcome to develop energy codes, would be for DOE to work directly with HUD and the MHCC, not write a rule and ask for comments. He thanked the members for the important work today.

Discussion of Department of Energy's Supplemental Notice of Proposed Rulemaking and Request for Comment - Energy Conservation Standards for Manufactured Housing and Prepare Comments/Answers about DOE's Questions in Rulemaking for HUD's review

See <u>Appendix C</u> for the full MHCC Comments on the DOE SNOPR.

During this teleconference, the MHCC developed general comments on the DOE SNOPR, reviewed/updated their responses/comments on questions 1-10, and developed responses/comments to questions 11-22. Questions 1-13 were addressed prior to a lunch break, and the discussion continued after the lunch break. Questions 14-22 were addressed after the lunch break.

Public Comment Period

Lesli Gooch, MHI, thanked everyone for their participation and asserted that the meeting was extremely productive. Ms. Gooch praised the comments and work of the members. She restated that MHI believes the proposal is fundamentally flawed. She expressed their concern that the proposed rule does not follow a proper cost benefit analysis. MHI believes the implementation of this rule would require massive changes to plants and could even make shipping homes to some states impossible. The discussion clearly demonstrated that this proposed rule is not cost effective and would eliminate manufactured homes as a cost-effective option. Ms. Gooch stated that their research showed that buyers would not ever get a return on investment for these additional costs, and it also showed a cost increase of at least \$1000 for each home. One of the places their research showed savings was in Fairbanks Alaska and the savings were \$300 over a 10-year period. She stated that it was clear the proposed rule would hurt prospective home buyers and finally thanked the MHCC for holding the DOE accountable.

Mark Weiss, MHARR, thanked everyone for the discussion and reiterated that MHARR has opposed the proposed rule from day 1. Mr. Weiss stated that the reason for this opposition is largely the cost and that the costs were not just abstract ideas. These costs will exclude millions of people from the market. The primary focus must be on purchase price and affordability. Mr. Weiss expressed his concern that none of the small manufacturers were participating in this meeting as it is important to get their input as they will be disproportionately impacted by these regulations.

Wrap Up – DFO & AO

Michael Baker thanked everyone for their participance and announced the next meeting on 20th of October. He asked the members to reach out to him for any question. DFO Payne appreciated everyone's participation and encouraged anyone who has volunteered to take on some questions to bring back to the committee with as much data as possible because the data will help inform the DOE and help them perform analysis. Kevin Kauffman gave the closing comments and thanked everyone.

Adjourn

The motion to adjourn the meeting was carried.

MEETING 3: Wednesday, October 20, 2021

Call to Order

The Manufactured Housing Consensus Committee (MHCC) meeting was held on Wednesday, October 20, 2021, via Zoom teleconference. Kevin Kauffman, Administering Organization (AO) Home Innovation Research Labs, called the roll and announced that a quorum was present. See <u>Appendix A</u> for a list of meeting participants.

Introduction and Opening Remarks

Teresa Payne, Administrator of the Office of Manufactured Housing Programs, and Designated Federal Officer (DFO) thanked the members for their time, restated that this was the last of the three meetings to discuss the DOE proposed rule and looked forward to a productive discussion.

MHCC Chair, Mitchel Baker thanked everyone for their participance. He reminded the members of the amount of remaining work and time.

Public Comments Period

See Appendix B for written public comments received prior to each meeting.

Megan Booth, MHI, reminded the MHCC that MHI had submitted comments prior to the meeting. Ms. Booth was appreciative for the MHCC allowing her this time. She expressed her concerns over the proposed DOE rule stating that it is fundamentally flawed as it does not follow a correct cost benefit analysis. This proposed rule will end up in higher costs for consumers who will never recoup these costs through savings or resale value. The discussions over the last meetings have made clear that this is not a cost-effective solution to increasing the energy efficiency of manufactured homes. The DOE proposal would likely not yield any benefit for consumers and actually would just end up costing them money. MHI's cost benefit analysis determined that this would cost at least \$1000 per single unit homes and upwards of \$5500 for multi-unit homes. As the MHCC finalizes their comments, MHI would strongly recommend that the energy requirements should be reworked and ensured that they are cost effective and testing and implementation should be covered before publishing a rule. MHI believes it is unnecessary for DOE to develop a new enforcement mechanism as this will only hurt the consumers. DOE must adhere to the statutory requirement to be cost effective.

Mark Weiss, MHARR, thanked everyone for the thorough discussion. There is a need to send the message to DoE that the MHCC members oppose this proposal. By MHARR's calculation, this proposal could exclude millions of potential home buyers. The most effected would be the ones who need the cost-effective housing solution that is manufactured homes. Cost of enforcement and testing must be addressed and included. For those excluded from the market, there will be no life cycle recoupment for this rule because they will be costed out of the market. This is a bad and damaging proposal that should be rejected and withdrawn by the DOE. Mr. Weiss mentioned that their request for additional comment submission time has been acknowledged by the DOE.

John Weldy, Clayton Homes, thanked MHCC for this opportunity. Mr. Weldy reminded the MHCC that he had given reasons on how he thought the proposal misses the mark in the previous meetings. He also mentioned that he had submitted written comments to the committee. Clayton Homes has done their

internal cost estimates for the thermal envelope and through observation of different models, estimated the cost increase in Thermal Zone 1 would be about \$600 and for Thermal Zone 3 would be around \$7000 which is a huge deal because of construction requirements for colder regions, specifically Thermal Zone 3. He stated that their cost analysis did not include testing, which could be a significant additional cost. They also believed that blower door testing is unnecessary, and DOE agrees as they have removed that requirement from EnergyStar. Clayton Homes believes that requiring energy testing would be a great cost with very little to gain. Mr. Weldy expressed his concern that the backlog of materials could last a few years. With none of the states adopting the 2021 IECC, requiring the manufactured homes to build to a higher standard is contrary to the affordability aspect which is the statutory requirement for manufactured homes. Mr. Weldy also took this opportunity to make a correction on his written comments- the current rule would require southern Virginia to meet the same requirements as a house in Fairbanks Alaska. They appear to have applied the thermal requirements from Fairbanks Alaska to as far south as Virginia. Every three years they look at the IECC and raise the bar incrementally, which is not what is being proposed to the HUD standard.

Discussion of Department of Energy's Supplemental Notice of Proposed Rulemaking and Request for Comment - Energy Conservation Standards for Manufactured Housing and Prepare Comments/Answers about DOE's Questions in Rulemaking for HUD's review

See <u>Appendix C</u> for the full MHCC Comments on the DOE SNOPR.

During this teleconference, the MHCC developed general comments on the DOE SNOPR, reviewed/updated their responses/comments on questions 1-22, and developed responses/comments to questions 23-30. The discussion and development of comments spanned the lunch break.

Submittal of Comments

MHCC Motion: Submit the comments as recorded over the course of the last 3 MHCC meetings on the DOE Supplemental Notice of Proposed Rulemaking to HUD.

Maker: Russell WatsonSecond: Robert ParksThe motion carried unanimously.

Public Comment Period

Megan Booth, MHI, re-stated that the DoE proposal was fundamentally flawed and has a negative impact on the industry and potential homebuyer at a time when need of affordable housing is acute. The proposal ignores the importance of HUD as the regulator of construction and safety standards for manufactured homes. This rule could require large changes in the manufactured homes and make transportation of manufactured homes in some location impossible. It excludes a proper cost benefit analysis and ignores the cost of enforcement and testing making an independent analysis impossible. This proposal by will reduce the number of manufactured homes consumers as it is not cost effective. These changes will lead to DoE eventually eliminating manufactured housing as affordable housing option.

Mark Weiss thanked the committee for their participation and asked the HUD proposal to be posted as quickly as possible. For the DOE proposal, he encouraged the members to try to quantify the additional costs to the purchaser.

Wrap Up – DFO & AO

Kevin Kauffman announced the closing of comments and projected date for a future meeting on this topic of November 19, 2021. DFO Payne thanked everyone for their time and stated that she looked forward to another meeting as it would be helpful to make sure everything is properly reviewed. Michael Baker also appreciated the work of the members and thanked everyone for their participation.

Adjourn

The motion to adjourn the meeting was carried.

MANUFACTURED HOUSING CONSENSUS COMMITTEE

1.888.602.4663 | MHCC@HUD.GOV | MHCC@HOMEINNOVATION.COM

Appendix A: MHCC Attendees and Guests

Appendix A:
MHCC Attendees and Guests

	МНСС			
	Name	Attendance, Day 1	Attendance, Day 2	Attendance, Day 3
	Mitchel Baker	Y	Y	Ŷ
	Tara Brunetti	Y	Y	Y
General Interest / Public Official	Aaron Howard			
	James Husom	Y	Y	Y
	Michael Moglia	Y	Y	Y
	Robert Parks	Y	Y	Y
	David Tompos	Y	Y	Y
Producers	Luca Brammer			
	Phillip Copeland	Y	Y	Y
	Peter James	Y		
	Manuel Santana	Y		
	Alan Spencer	Y		
	Cameron Tomasbi	Y	Y	Y
	Dave Anderson	Y	Y	Y
	Rita Diienno			
	Stacey Epperson	Y	Y	Y
User	Joseph Sullivan	Y	Y	Y
	Garold Miller	Y	Y	Y
	Russell Watson	Y	Y	Y
	Catherine Yielding	Y	Y	Y

HUD Staff

Teresa Payne, DFO Jason McJury Barton Shapiro Demetress Stringfield Alan Field Glorianna Peng Charles Ekiert Christina Foutz Tommy Daison Angelo Wallace Denair Andersen Mike Hollar Liz Davis Barry Ahuruonye

AO Staff, Home Innovation

<u>Research Labs</u> Kevin Kauffman Nay Shah Elina Thapa

<u>Guests</u>

William Sherman Lesli Gooch Mark Weiss Michael Lubliner John Turner James Turner Demond Matthews Kara Beigay Megan Booth Antoinette Price Devin Leary-Hanebrink Jennifer Hall Michael Chavez Nate Kinsey Pat Walker James Martin John Weldy Nawroz Aziz John Baily Bill Sherman Carrie Paine Chris Morgan Courtney Marshall Jane Hofilena Morgan Garguilo Norman Wang Rory Hoffmann Tim Ballo

MANUFACTURED HOUSING CONSENSUS COMMITTEE

1.888.602.4663 | MHCC@HUD.GOV | MHCC@HOMEINNOVATION.COM

Appendix B: Written Public Comments

Public Comments Received for September 23, 2021

1	Leslie Gooch, MHI
2	Mark Weiss, MHARR
Public	Comments Received for October 8, 2021
3	Leslie Gooch, MHI
4	Mark Weiss, MHARR
Public	Comments Received for October 20, 2021
5	John Weldy, Clayton Homes
6	Leslie Gooch, MHI
7	Mark Weiss, MHARR

September 16, 2021

Manufactured Housing Consensus Committee Office of Manufactured Housing Programs U.S. Department of Housing and Urban Development 451 7th Street SW, Room 9166 Washington, D.C. 20410

RE: Notice of a Federal Advisory Committee Meeting: Manufactured Housing Consensus Committee (Docket No. FR-6270-N-02)

Dear Sir/Madam:

The Manufactured Housing Institute (MHI) is pleased to provide feedback to the U.S. Department of Housing and Urban Development (HUD) and the Manufactured Housing Consensus Committee (MHCC) in response to the request for public comments in preparation for the MHCC's upcoming teleconference on September 23, 2021, about the Department of Energy's (DOE) supplemental notice of proposed rulemaking titled "Energy Conservation Program: Energy Conservation Standards for Manufactured Housing."

MHI is the only national trade association that represents every segment of the factory-built housing industry. Our members include home builders, suppliers, retail sellers, lenders, installers, community owners, community operators, and others who serve the industry, as well as 48 affiliated state organizations. In 2020, our industry produced nearly 95,000 homes, accounting for approximately nine percent of new single-family home starts. These homes are produced by 34 U.S. corporations in 138 plants located across the country. MHI's members are responsible for close to 85 percent of the manufactured homes produced each year.

To be clear, MHI and its members have always supported energy conservation efforts and other reasonable environmental protection initiatives, and we will continue to do so. Not only are new factorybuilt homes as efficient as their site-built counterparts, but in 2020, more than 30 percent of new manufactured homes were built to meet or exceed Energy Star standards. Further, today's manufactured homes already offer many energy efficient options. Just like site-built homes, manufactured homes are constructed and fitted with energy efficient features that are tailored to the climate demands of the region in which each home will be sited.

MHI believes the impact of any proposed energy conservation standards on the availability of manufactured housing needs to be paramount. Any increase in construction costs, even modest increases in response to a new energy conservation standard, could jeopardize homeownership for millions of Americans at time when there is an affordable housing shortage in the country. MHI urges the MHCC to consider the financial impact of cost increases on prospective purchasers of manufactured homes, including the loss of homeownership opportunities, as it reviews the proposed rule and take the following issues and concerns into consideration.

Page 2 Submission by the Manufactured Housing Institute September 16, 2021

Reliance on the International Energy Conservation Code

One of the tenets of the National Manufactured Housing Construction and Safety Standards Act (NMHCSS) is the importance of ensuring that manufactured housing remains an affordable housing option for all consumers considering homeownership. The Energy Independence and Security Act of 2007 (EISA) states "energy conservation standards established under this section shall be based on the most recent version of the International Energy Conservation Code (including supplements), **except in cases in which the Secretary finds that the code is not cost effective**, or a more stringent standard would be more cost-effective, based on the impact of the code on the purchase price of manufactured housing and on total life-cycle construction and operating costs."¹ Thus, the reasoning behind requiring DOE to consider the unique aspects and construction techniques of the manufactured housing industry.²

The International Code Council (ICC) is a member-focused association that develops model building codes and standards that are used in the design and construction of safe, sustainable, affordable, and resilient structures.³ The ICC's International Energy Conservation Code (IECC) is a baseline energy standard with guidelines for mechanical systems, lighting systems, service water heating systems, and building envelope, among other areas.

EISA directs DOE to establish energy conservation standards for manufactured housing based on the most recent version of the IECC (unless it is found to be not cost effective), which was published in January 2021. To date no state has adopted the 2021 IECC standards and the vast majority of states are using amended versions of the 2009 IECC in their state building code for site-built homes. While the IECC is respected in the construction industry, it was introduced as a standard specific to commercial and site-built residential housing with no input from the manufactured housing industry. Given that the IECC essentially ignores all the construction aspects unique to manufactured housing, requiring the industry to comply with a building code that was developed without the benefit of our industry's knowledge or participation is not an appropriate solution. The most appropriate code to utilize to update energy standards for manufactured homes is the HUD Code.

Feasibility of DOE's Proposed Changes

The DOE's proposed rule seeks to make changes related to the building thermal envelope; air sealing; installation of insulation; duct sealing; heating, ventilation, and air conditioning (HVAC); service hot water systems; mechanical ventilation fan efficacy; and heating and cooling equipment sizing. If the DOE attempts to enforce the IECC, a code originally developed and intended for commercial and sitebuilt residential buildings, to propose these changes, manufacturers will have to redesign all their current floor plans to accommodate the changes resulting in the possible elimination of some home features.

For example, regulations in the IECC will require thicker insulation which will mean manufactured homes will have to allow for higher heel height, rafter and truss changes, which will not only require redesign but also reviewing how the homes will be transported from the factory to the home site. Another example is the current HVAC systems used in manufactured homes will have to be reviewed. Based on the proposed changes, it is unclear if there are current HVAC systems on the market that could accommodate these requirements, and if not, what the expense will be to redesign the HVAC systems or create new ones, which will ultimately increase the cost of the home and the price the consumer pays for it. Further, all these changes will take time to implement.

¹ 42 U.S.C. 17071(b)(1).

² Id. at 17071(b)(2)(A).

³ International Code Council, https://www.iccsafe.org/about-icc/overview/about-international-code-council/ (accessed July 27, 2021)

Page 3 Submission by the Manufactured Housing Institute September 16, 2021

There are also additional issues MHI urges the MHCC to consider when reviewing the proposed rule including:

- (1) Proposed energy requirements should be revised to reflect a complete and accurate cost benefit analysis, which the Energy Independence and Security Act of 2007 (EISA) requires correcting requirements based on improper calculations and methodologies (such as the 30-year payback assumption in the proposed rule, when most manufactured home mortgage loans are fully amortized over only 15 years).
- (2) The proposed \$55,000 low-income tier threshold for streamlined energy efficiency requirements is based on the demonstrably false premise that manufactured homes above \$55,000 are not affordable to low-income homebuyers. Affordability needs to be reviewed in the context of the overall housing market, not just within the manufactured housing space.
- (3) Energy requirements in the proposed rule that were developed based on an inappropriate site-built housing framework should be revised, particularly those requirements that are redundant or conflict with HUD code requirements and that thereby add unnecessary costs.
- (4) Testing requirements for each of the systems being modified in the proposal, must be included. Determining the impact of a system change without knowing the testing parameters is impossible. DOE must not propose a rule without including the required testing requirements, so any analysis can include the true impact.
- (5) The proposed rule does not include compliance and enforcement provisions which DOE says it will address at a later date. MHI believes it is unnecessary for the DOE to develop a new enforcement mechanism with any proposed manufactured housing energy conservation standard because the HUD Code is an already-established enforcement mechanism that mandates a uniform standard for design, construction, and installation, including federal requirements for safety, durability, and energy efficiency. Failure to partner with HUD would result in complicated, overlapping requirements that will only increase manufacturing costs, hurting existing homeowners and prospective homebuyers.

While MHI and its members will always support sensible energy conservation efforts, overly burdensome regulations that even modestly increase the cost of a manufactured home will price many consumers out of homeownership. This increase will have a disproportionate impact on minority communities, who face the most significant burden in obtaining affordable homeownership and would be in direct contrast to the Administration's goal of achieving racial equity in homeownership. MHI stands ready to work with DOE, HUD and the MHCC on the development of realistic and achievable energy standards that not only encourages innovation and conservation, but also eliminates regulatory barriers that impede consumer access to safe, affordable manufactured housing.

Sincerely,

Just Gooch

Lesli Gooch, Ph.D. Chief Executive Officer

Manufactured Housing Association for Regulatory Reform

1331 Pennsylvania Avenue, NW • Suite 512 • Washington, DC 20004 • 202-783-4087 • Fax 202-783-4075 • mharrdg@aol.com

September 15, 2021

VIA FEDERAL EXPRESS AND ELECTRONIC SUBMISSION

Manufactured Housing Consensus Committee C/O Home Innovation Research Labs Administering Organization 400 Prince George's Boulevard Upper Marlboro, Maryland 20774

Re: Proposed Energy Conservation Standards for Manufactured Housing

Dear Members of the Manufactured Housing Consensus Committee:

The Manufactured Housing Association for Regulatory Reform (MHARR) submits the following comments in connection with the Manufactured Housing Consensus Committee's (MHCC) consideration of a Supplemental Notice of Proposed Rulemaking (SNPR) regarding "Energy Conservation Standards for Manufactured Housing" published by the U.S. Department of Energy (DOE) in the Federal Register on August 26, 2021.¹ MHARR is a national trade association representing producers of manufactured housing subject to federal regulation pursuant to the National Manufactured Housing Construction and Safety Standards Act of 1974 (1974 Act), as amended by the Manufactured Housing Improvement Act of 2000 (2000 reform law), as well as relevant provisions of the Energy Independence and Security Act of 2007 (EISA).

I. INTRODUCTION

The following are MHARR's <u>initial</u> comments regarding the August 26, 2021 DOE manufactured housing energy standards supplemental proposed rule. Because of the compressed time schedule that DOE's sixty-day comment period for the August 26, 2021 proposed standards has effectively imposed on the Manufactured Housing Consensus Committee (MHCC) (and other stakeholders') review, factfinding, analysis, and comment on the proposed standards, these initial comments will focus primarily on policy and cost aspects of the DOE proposal. MHARR will provide additional comments regarding technical and other aspects of the proposed standards as the MHCC review process moves forward.²

¹ See, 86 Federal Register, No. 163 (August 26, 2021) at p. 47744.

 $^{^{2}}$ See, however, section II. A, below, regarding a request for an extension of time for comments in response to the DOE proposed rule.

As MHARR has previously emphasized, the fundamental duties and responsibilities of the MHCC, as is made clear both by its composition and by its enumerated statutory functions, are not merely "technical" in nature. While an analysis of the technical merit of any proposal is an important part of the MHCC's duties, its responsibilities extend much further, to a consideration of: (1) whether a proposal serves to advance the statutory objectives of the 2000 reform law (42 U.S.C. 5401);³ (2) an analysis of the probable effect of the proposed standard, regulation or interpretation on the "cost of the manufactured home to the public" (42 U.S.C. 5304(e)(4));⁴ and (3) whether the benefits of any such proposal outweigh its costs and likely impact on the "availability of affordable manufactured homes." (42 U.S.C. 5401(b)(2)).

These <u>same</u> duties and functions, moreover, were expressly recognized by Congress in connection with manufactured housing energy standards under EISA. EISA section 413 thus specifically provides a review and comment role for the MHCC, and authorizes the MHCC to consider the impact of DOE-proposed energy standards on the purchase price of manufactured housing.⁵ MHCC consideration of the current DOE proposal, therefore, involves not just an analysis of its purported technical merit, but also a balancing of whether that proposal, <u>even if technically practicable</u>, would produce destructive cost impacts that would override its value in connection with a type of housing that, as a matter of federal policy, is – <u>and must remain</u> – inherently affordable for every American and, particularly, lower and moderate-income homebuyers.

It is <u>critical</u> to note, moreover, in connection with these comments, that the cost burdens of federal regulation and over-regulation fall <u>disproportionately</u> on smaller businesses (and their consumers), including smaller HUD Code producers represented by MHARR, as well as retailers and communities. A landmark 2010 study of this issue by the U.S. Small Business Administration (SBA), found that "small businesses face an annual regulatory cost … which is <u>36 percent higher</u> than the regulatory cost facing large firms Defined as firms with 500 or more employees)."⁶(Emphasis added). This differential would undoubtedly be much higher today,

³ The 2000 reform law provides, in relevant part, "The purposes of this title are -(1) to protect the quality, durability, safety and affordability of manufactured homes [and] (2) to facilitate the availability of affordable manufactured homes and to increase homeownership for all Americans."

⁴ The 2000 reform law provides, in relevant part, "The consensus committee, in recommending standards, regulations and interpretations ... shall: *** (4) consider the probable effect of such standard on the cost of the manufactured home to the public."

⁵ 42 U.S.C. 17071 provides, in relevant part: "(a)(1) Not later than 4 years after December 19, 2007, the Secretary shall by regulation establish standards for energy efficiency in manufactured housing. (2) Standards described in paragraph (1) shall be established after— (A) notice and an opportunity for comment by manufacturers of manufactured housing and other interested parties; and (B) consultation with the Secretary of Housing and Urban Development, who may seek further counsel from the Manufactured Housing Consensus Committee. (b)(1) The energy conservation standards established under this section shall be based on the most recent version of the International Energy Conservation Code (including supplements), except in cases in which the Secretary finds that the code is not cost-effective, or a more stringent standard would be more cost-effective, based on the impact of the code on the purchase price of manufactured housing and on total life-cycle construction and operating costs."

⁶ <u>See</u>, U.S. Small Business Administration, "The Impact of Regulatory Costs on Small Firms," (Nicole V. Crain and W. Mark Crain) September 2010 at p. 8: "[Regulatory] costs per employee thus appear to be at least 36 percent higher in small firms than in medium-sized and large firms. *** In large firms, these fixed costs of [regulatory] compliance are spread over a large revenue, output, and employee base, which results in lower costs per unit of output as firm size

following an additional decade-plus of ever-expanding federal regulation. In reviewing the DOE proposed rule, therefore, the MHCC should and <u>must</u> consider not only its likely impact on the purchase cost and availability of manufactured housing generally, but also: (1) the proposed rule's <u>specific</u> potential impacts on smaller manufactured housing producers, retailers and communities; (2) the future viability and market share of those smaller, independent manufactured housing producers, retailers and communities as a consequence of disproportionately-higher regulatory burdens and costs attributable to the DOE proposed rule; and (3) the exacerbation of regulatory cost impacts on consumers as a result of further and more rapid industry consolidation – and a related loss of full and robust intra-industry competition – as a result of excessive and disproportionate cost burdens attributable to the proposed rule. MHARR will address all of these issues in its comprehensive written comments to DOE and in further comments to the MHCC, as the Committee proceeds with its scheduled review and analysis of the proposed "supplemental" rule.

For all of the reasons set forth below, therefore – and that <u>will</u> be detailed in further forthcoming MHARR comments in this matter – MHARR asks the MHCC to <u>reject</u> DOE's proposed manufactured housing energy standards rule, in its current form, as a baseless, unnecessary attack on the availability and affordability of manufactured housing, which will needlessly exclude vast numbers of lower and moderate-income Americans from the American Dream of homeownership in order to satisfy the ideological predilections of "climate" extremists.

II. <u>COMMENTS</u>

A. THE MHCC SHOULD REQUEST AN IMMEDIATE EXTENSION OF THE DOE COMMENT DEADLINE

As an initial procedural matter, MHARR urges the MHCC to request an <u>immediate</u> extension of the DOE written comment deadline in this matter in order to provide sufficient time for the MHCC (and other affected stakeholders) to conduct a valid, legitimate and <u>fully-informed</u> review and analysis of the DOE proposed rule.⁷

DOE acknowledges that its August 26, 2021 proposed manufactured housing energy rule – <u>a rule that, to date, it has spent 14 years developing</u>, and that has been <u>fundamentally flawed</u> from its inception through its current iteration -- is a "significant regulatory action" as determined by the Office of Management and Budget (OMB), meaning that it will likely "Have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities."⁸Given the significant and, indeed, <u>extreme</u>

increases. This is the familiar empirical phenomenon known as economies of scale, <u>and its impact is to provide a</u> <u>comparative cost advantage to large firms over small firms</u>." (Emphasis added).

⁷ This request should have the full, <u>express</u> and specific support of the Department of Housing and Urban Development and its Office of Manufactured Housing Programs as the agency charged by federal law with ensuring that the purposes and objectives of federal manufactured housing law as set forth above, are carried out and achieved.

⁸ DOE's August 26, 2021 SNPR states, in relevant part: "The Administrator of the Office of Information and Regulatory Affairs ("OIRA") in the OMB has determined that the regulatory action in this document is a significant regulatory action under section (3)(f) of E.O. 12866." See, 86 Federal Register, supra, at p. 47822, col. 3. Section

impacts that this proposed rule would have on both the manufactured housing industry (and especially its smaller businesses) and American consumers of affordable housing, as well as the <u>myriad</u> of technical and related cost considerations entailed in seeking to adapt and conform a code for site-built structures to the unique construction and economic imperatives of federally-regulated manufactured housing, a 60-day comment period (punctuated by at least two federally-designated holidays) is <u>clearly inadequate</u> and fundamentally unfair and inequitable both to the MHCC and to other interested parties, including MHARR, that will submit comment on the proposed rule, likely including comments that reference, rely upon, or amplify comments offered by the MHCC.

While HUD has scheduled three meetings for the MHCC to consider and analyze the DOE proposed rule and prepare responsive comments, with meetings currently scheduled on September 23, 2021, October 8, 2021 and October 20, 2021^9 – just five days before the current DOE comment deadline – these meetings are based on a <u>highly-compressed</u> time schedule that is <u>unlikely</u> to provide sufficient time for <u>thorough</u>, proper and legitimate MHCC consideration and vetting of the DOE proposed rule from the unique perspective of manufactured housing users, producers, retailers and communities. A <u>thorough</u> vetting of this sort is not only authorized and, indeed, <u>required</u> by applicable statutes, as noted above, but is <u>particularly necessary</u> in <u>this</u> rulemaking, where DOE has <u>repeatedly</u> demonstrated its willingness to deceive, connive, obfuscate, distort the facts, conspire and skirt the law, with successive fundamentally flawed proposals, in order to achieve the policy objectives that it institutionally shares with climate extremists and energy special interests.¹⁰

There is, moreover, recent <u>direct</u> precedent for such an extension. On August 9, 2021, DOE published notice of an extension of the comment deadline for proposed revisions to its so-called "Process Rule" concerning updates to appliance energy standards under the Energy Policy and Conservation Act of 1975.¹¹In that notice, DOE stated: "On July 29, 2021, interested parties in this matter, the Joint Commenters, requested an extension of the public comment period for the [Notice of Proposed Rulemaking] to September 13, 2021. The Joint Commenters asked for this additional time due to their assertion that the proposed rule is <u>complex and multi-faceted</u>, which requires more time to <u>effectively</u> review it and formulate their comments."¹²(Emphasis added). If anything, the present rulemaking is even more "complex and multi-faceted" than the DOE process rule

¹² Id.

⁽³⁾⁽f) of Executive Order 12866, "Regulatory Planning and Review" (September 30, 1993), in turn, states that a "significant regulatory action" is one that is likely to result in a rule that may: (1) Have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities; (2) Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency; (3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or (4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in this Executive order."

⁹ <u>See</u>, 86 Federal Register No. 171 (September 8, 2021) "Notice of a Federal Advisory Committee Meeting: Manufactured Housing Consensus Committee," at p. 50369.

¹⁰ Fully-documented details of DOE's manipulation of this rulemaking – <u>from its inception</u> – are set forth in MHARR's August 8, 2016 comments to DOE regarding the initial DOE proposed manufactured housing energy standards rule (MHARR2016 DOE Comments), which the current SNPR allegedly "supplements." Those comments are attached hereto as Attachment 1. MHARR hereby incorporates those comments herein as if restated in full.

¹¹ <u>See</u>, 86 Federal Register No. 150 (August 9, 2021) "Extension of Public Comment Period," at p. 43429, attached hereto as Attachment 2.

because: (1) it is an entirely <u>new</u> proposed rule, not a mere update of an existing rule; (2) it involves and addresses construction of the <u>entire home</u> rather than specific discrete appliances; (3) entails <u>statutory</u> considerations of cost and cost-effectiveness involved in fundamentally transforming an energy code for site-built homes into standards for affordable manufactured homes, that must be completely and properly considered and evaluated in order to avoid potentially irreparable harm to manufactured housing consumers and smaller industry businesses; and (4) must be <u>thoroughly</u> vetted by the MHCC in light of DOE's egregious 14-year track record of fundamentally flawed and highly-destructive manufactured housing energy proposals.

Accordingly, MHARR asks the MHCC to request a comment deadline extension from DOE for itself and all other commenters – and that it take other steps as necessary to ensure that such an extension is granted – in order to ensure: (1) that all applicable statutory guarantees are observed and honored; (2) that the MHCC can perform its essential vetting and commentary function based on full and complete information and analysis; and (3) to ensure that yet another fundamentally flawed DOE manufactured housing energy proposal is not imposed as a final rule.

B. MANUFACTURED HOME ENERGY USAGE AND COSTS ARE ALREADY LOWER THAN OTHER TYPES OF HOMES

DOE manufactured housing "energy conservation" standards, including the August 26, 2021 proposed standards, are – and always have been – a purported "solution" in search of a problem. Notwithstanding continual efforts by DOE, climate extremists, energy special interests and others to skew, manipulate, obfuscate and distort relevant data, the fact of the matter is that HUD-regulated manufactured homes, <u>under existing HUD manufactured housing standards</u> for energy and energy-related functions, <u>already</u> offer occupants <u>lower</u> monthly energy costs than other types of homes. Indeed, federal government data shows that monthly manufactured housing energy costs have actually fallen further below energy costs for single-family detached site-built homes since DOE published its initial manufactured housing energy standards proposal in 2016.

In its written comments on the 2016 DOE manufactured housing energy rule, MHARR noted:

"As a consequence of ... pre-existing HUD energy standards, manufactured homes, as established by U.S. Census Bureau data, are <u>already</u> energy efficient without regressive, high-cost DOE energy mandates. Specifically, data from the 2013 American Housing Survey shows that the median monthly housing cost for fuel oil was \$92.00 for manufactured homes as compared to \$267.00 for other types of housing. The median monthly cost for piped natural gas was \$34.00 for manufactured homes as compared with \$38.00 for other types of housing, and the median monthly cost for electricity was only slightly higher for manufactured homes (at \$119.00) than other types of homes (at \$105.00) – a difference of only \$168.00 per year."¹³

(Emphasis in original).

¹³ See, Attachment 1, supra at p. 23.

Newer data published in the 2019 American Housing Survey (AHS), however, shows that today's modern, HUD Code manufactured homes, have lower median monthly energy costs than detached site-built homes in all fuel categories. Specifically, the 2019 AHS shows that the median monthly cost for fuel oil was \$83.00 for manufactured homes, as compared with \$125.00 for detached site-built homes.¹⁴The median monthly cost for natural gas was \$40.00 for manufactured homes, as compared with \$58.00 for site-built detached housing, and the median monthly cost for electricity was \$122.00 for manufactured homes, as compared with \$124.00 for site-built homes.¹⁵The median monthly fuel cost for HUD-regulated manufactured homes across all types and ages, therefore, is already up to 51% less than the monthly median fuel cost for single-family detached site-built homes.¹⁶Similarly, the mean monthly fuel cost for current manufactured homes, as calculated by the AHS, is also lower than the mean for single-family, detached, site-built homes with respect to monthly fuel costs. Thus, the mean monthly cost for electricity in manufactured homes is \$133.00, as compared with \$141.00 for detached, single-family, site-built homes, the mean monthly cost for piped gas in manufactured homes is \$60.00, as compared with \$73.00 for site-built homes, and the mean monthly cost for fuel oil is \$88.00 in manufactured homes, as compared with \$143.00 for site-built homes.¹⁷The mean monthly fuel cost for HUD-regulated manufactured homes across all types and all ages, therefore, is already up to 62% less than the mean monthly fuel cost for detached, single-family, site-built homes.¹⁸

The existing HUD manufactured housing energy standards, accordingly, ensure the energy operating affordability of manufactured homes – on a whole-home basis, as compared with sitebuilt, single-family homes – while maintaining and preserving the overall purchase price <u>affordability</u> of manufactured housing in accordance with, and as <u>required by</u>, applicable federal law. By contrast, alleged "analyses" comparing site-built and manufactured home energy usage and energy costs on a per-square-foot basis, are irrelevant and misleading, because the average size of all manufactured homes in 2020 -- again according to U.S. Census Bureau data – was 1,471 square feet, as contrasted with an average size of 2,527 square feet for a single-family site-built home, a size differential of almost 72%.¹⁹ The MHCC, accordingly, should reject cost comparisons and analyses based on "per-square-foot" energy usage,²⁰ and should instead base its analyses and conclusions regarding the efficacy and affordability of manufactured housing energy standards

¹⁴ <u>See</u>, U.S. Census Bureau, 2019 American Housing Survey, Fuel Cost Comparison Table (extract), attached hereto as Attachment 3.

¹⁵ <u>Id</u>.

¹⁶ The 2019 AHS data thus shows that the median monthly cost for electricity is 1.6% less in <u>current</u> HUD Code manufactured homes than in detached, single-family site-built homes, monthly piped gas costs are 45% lower in <u>current</u> manufactured homes, and monthly fuel oil costs are 50.6% lower in HUD-regulated manufactured homes. ¹⁷ See, Attachment 3.

¹⁸ The 2019 AHS data thus shows that the mean monthly cost for electricity is 6% less in current HUD Code manufactured homes than in detached, single-family site-built homes, mean monthly piped gas costs are 21.6% lower in current manufactured homes, and mean monthly fuel oil costs are 62.5% lower in HUD-regulated manufactured homes.

¹⁹ Even limiting the size comparison to larger, double-section manufactured homes, site-built homes are still 43.5% larger.

 ²⁰ See e.g., American Council for an Energy Efficient Economy (ACEEE), "A Buildings Efficiency Agenda for 2021 – Manufactured Housing Standards" (October 2020) at p. 1: "Manufactured homes use more than \$12 billion in energy each year.... The average energy cost per square foot is 70% higher than for the average single-family home."

based on "whole house" energy usage and cost comparisons. Analyzed in that manner, using authoritative data from federal sources, it is apparent and, indeed, <u>indisputable</u>, that manufactured homes, under existing HUD Code energy standards, are already both energy-efficient and cost-efficient from the perspective of the homeowner as required by applicable federal law.

This result is also compelled by the fact that the cost-benefit language of EISA section 413, requiring that DOE manufactured housing energy standards be based on the most recent version of the IECC, "except in cases in which the Secretary finds that the code (sic) is <u>not cost-effective</u>" (emphasis added), <u>must</u> be construed and applied consistently with the purposes, objectives and requirements of <u>existing</u> law, in this case, the 1974 Act as amended by the 2000 reform law.²¹Therefore, the "cost-effective" proviso of EISA section 413 must be construed and applied – consistently with the 1974 Act, as amended – to ensure that <u>non-life-safety</u> DOE energy standards do <u>not</u> result in <u>purchase price increases</u> to manufactured homes that would significantly impair their affordability, availability and accessibility to <u>all</u> Americans, or otherwise decrease homeownership in violation of 42 U.S.C. 5401.

C. THE PROPOSED DOE STANDARDS WOULD RESULT IN CATASTROPHIC PURCHASE PRICE INCREASES

The manufactured housing market -- and manufactured housing regulation -- is based on <u>purchase price</u> affordability. This statutory and regulatory focus on initial purchase price affordability is consistent with the status of manufactured housing as "the largest source of unsubsidized affordable housing in" the United States and an "important source" of low-income homeownership, as noted by the U.S. Consumer Financial Protection Bureau (CFPB).²²Applicable law thus recognizes that manufactured housing is uniquely price-sensitive, as its consumer base is comprised largely of lower and moderate-income purchasers. Purchase price affordability, as a result, is <u>necessarily</u> antecedent to – and more critical to the manufactured housing market – than so-called "life-cycle" affordability, because for potential purchasers excluded from the market altogether by excessive, regulatory-driven purchase price increases, there is no home they can afford to purchase and, therefore axiomatically, <u>no "life-cycle</u>." Accordingly, the MHCC's cost analysis of the DOE energy SNPR is crucial should focus first and foremost on its likely purchase price and purchase market impacts.

As <u>currently</u> constituted, the HUD manufactured housing construction and safety standards effectively maintain the purchase price affordability of manufactured homes at monthly energy operating cost levels (as demonstrated above), <u>that are well below the comparable monthly energy</u> <u>operating costs of site-built homes</u>. Current HUD standards, moreover, also ensure that the <u>total</u> monthly operating costs of HUD Code manufactured are significantly lower than those of sitebuilt homes. The 2019 American Housing Survey thus documented a monthly median housing operating cost of <u>\$610.00</u> for manufactured homes, and <u>\$1,106.00</u> for single-family, detached site-

²¹ <u>See e.g.</u>, "Statutory Interpretation, General Principles and Recent Trends," Congressional Research Service (December 19, 2011) at p. 29, stating: "A court 'must read two statutes to give effect to each if it can do so." Citing <u>Watt v. Alaska</u>, 451 U.S. 259 (1981).

²² <u>See</u>, Consumer Financial Protection Bureau, "Manufactured Housing Finance: New Insights from the Home Mortgage Disclosure Act Data" (May 2021), pp. 8-9.

built homes, a savings of nearly 58% under the <u>current</u> HUD manufactured housing standards. Consequently, the existing HUD Code standards --including the existing HUD Code <u>energy</u> standards -- are consistent with the affordability and affordability balancing requirements of federal law, which ensure that manufactured homes are not only energy-efficient but are also available at a range of purchase prices that are affordable for lower and moderate-income Americans. The International Energy Conservation Code (IECC), by contrast, is subject to <u>no</u> similar statutory affordability or balancing mandates. As a result, it is a <u>high-cost</u> code, as was demonstrated initially by MHARR in 2016 with respect to the 2015 IECC and by Home Innovation Research Labs (HIRL) – the research arm of the National Association of Home Builders (NAHB)²³ – with respect to the 2021 IECC.

The 2015 IECC, which was the basis for DOE manufactured housing energy standards initially proposed in 2016²⁴-- as calculated by MHARR - would have resulted in retail level purchase price increases of \$4,601.00 for a single-section manufactured home, and \$5,825.00 for a double-section manufactured home.²⁵These amounts included industry-standard builder and retailer profit margins,²⁶ but did not include regulatory testing, compliance or enforcement costs. which were not estimated or considered by DOE in the June 2016 rulemaking proceeding. Consistent with MHARR's 2016 findings, a June 2021 HIRL report found that the 2021 IECC, as published, would result in a national incremental construction cost increase of \$6,548.00 to \$9,301.00 for a specified reference home of 2,500 square feet, depending on the compliance mechanism selected.²⁷The same analysis shows a national simple construction cost payback period ranging from 32 to 67 years, again based on the compliance mechanism. Prorating these amounts to the smaller size of an "average" single-section and double-section manufactured home, as defined by the U.S. Census Bureau, and including industry-standard profit margins identical to those used in MHARR's 2016 calculation, the 2021 IECC, in unmodified form, would yield a minimum incremental retail-level price increase of \$7,958.00 for an "average" single section manufactured home and a minimum incremental retail-level price increase of \$12,908.00 for an "average" double-section manufactured home.²⁸And again, it must be stressed that as large as these amounts are, they are necessarily incomplete, in that: (1) they do not include regulatory testing, compliance or enforcement costs; and (2) do not include costs attributable to future changes to the IECC and the costs of compliance with such future modifications - which are, and would be, totally unnecessary for today's modern, already energy cost-efficient, HUD Code manufactured homes.

²³ <u>See</u>, Home Innovation Research Labs, "2021 IECC Residential Cost Effectiveness Analysis" (June 2021) (HIRL Report), attached hereto as Attachment 4.

²⁴ See, 81 Federal Register, No. 117 (June 17, 2016), "Energy Conservation Standards for Manufactured Housing," at p. 39756, et seq.

²⁵ See, MHARR 2016 DOE Comments, at p. 15, note 42.

²⁶ Industry-standard builder and retailer profit margins were calculated as multiples of 2.0 and 1.4 by MHARR, based on input from smaller, independent producers.

²⁷ See, HIRL Report at p. 14.

²⁸ <u>I.e.</u>, for a single-section home: 6,548.00/2,500 square feet = 2.619 per square foot x 1,085 square feet (for an "average" single-section manufactured home) = $2,842.00 \times 2$ (builder profit) = $5,684.00 \times 1.4$ (retailer profit) = 7,958.00 retail level price increase. For a double section home: 6,548.00/2500 square feet = 2.619 per square foot x 1,760 square feet (for an "average" double-section manufactured home) = $4,610.00 \times 2$ (builder profit) = $9,220.00 \times 1.4$ (retailer profit) = 12,908.00 retail level price increase.

While the August 26, 2021 DOE proposed rule does not incorporate the full 2021 IECC as to either "Tier1" or "Tier 2," and also includes arbitrary DOE modifications to certain 2021 IECC criteria, MHARR expects that a full purchase price analysis of the DOE proposal, based on current costs for smaller, independent producers, will yield expected purchase price increases between the 2016 MHARR projected amounts and the 2021 HIRL projected amounts. Regardless of the precise amount(s), however, price increases of this magnitude – and anywhere within this potential range -- within the highly cost-sensitive manufactured housing market, would be <u>devastating</u> to lower and moderate-income consumers who rely on the purchase price affordability of manufactured housing, in direct violation of federal law.

First, price increases of this magnitude would exclude <u>millions</u> of Americans from the manufactured housing market and from homeownership altogether. An NAHB analysis presented to the DOE Manufactured Housing Working Group in 2014, demonstrated that for every \$1,000.00 increase in the purchase price of a single-section manufactured home, 347,901 households are excluded from the market. Similarly, for a double-section home, a \$1,000.00 purchase price increase excludes 315,385 households from the market.²⁹Extrapolating these amounts to the purchase price increases under the full, unmodified 2021 IECC calculated above, 2,748,417 households would be excluded from the single-section manufactured housing market (and homeownership altogether) and 4,068,466 households would be excluded from the double-section manufactured housing market.³⁰In total, therefore, 6,816,883 households that could afford to purchase a manufactured home <u>now</u>, would be totally excluded from the market under the 2021 IECC. At a 2020 annual production level of 94,390 total homes, this degree of consumer exclusion represents a loss of more than <u>72 years</u> of manufactured home production. Furthermore, for those excluded from the market altogether due to 2021 IECC-driven price increases, by definition, there would be <u>no</u> "life-cycle" savings whatsoever, and <u>no</u> payback period of any kind.

Extrapolating the same analysis to a median purchase price increase level 50% above that calculated by MHARR for the 2016 IECC, and 50% below the <u>unmodified</u> 2021 IECC to reflect the potential impact of DOE SNPR modifications, the corresponding purchase price increase levels would be \$6,279.00 for a single-section manufactured home and \$9,366.00 for a double-section manufactured home. At these amounts, more than 2,156,986 households would be excluded from the HUD Code single-section market, and more than 2,933,080 households would be excluded from the HUD Code double-section market, for a total of over 5,090,006 households, representing nearly 54 years of production at 2020 market levels.

Even with substantial modifications to the 2021 IECC, therefore, the impact of the DOE proposed rule on the manufactured housing market, manufactured housing consumers, and manufactured housing producers, retailers and communities, including most especially smaller businesses operating at lower profit margins, would be <u>extreme</u> and <u>extremely destructive</u>. Insofar

²⁹ See, MHARR 2016 DOE Comments at p. 25.

³⁰ For single section manufactured homes: \$7,958.00 (minimum retail price increase) x 347,901 (excluded from the market per \$1,000.00 price increase) = 2,748,417 excluded. For double section manufactured homes: \$12,908 (minimum retail price increase) x 315,385 (excluded from the market per \$1,000.00 price increase) = 4,068,466 excluded

as it would decimate the affordable manufactured housing market, it should and indeed, $\underline{\text{must}}$ be rejected.³¹

Second, and in addition to this excessive and disproportionate level of total market exclusion that would result from the DOE proposed rule, cost increases of this magnitude would substantially reduce the number of lower and moderate-income purchasers who could qualify to finance a manufactured home purchase. Already, at current retail price levels, the vast majority of applications for manufactured home consumer purchase loans are denied. According to a May 2021 report by the U.S. Consumer Financial Protection Bureau (CFPB),³² only "a minority (<u>27</u> percent) of consumers who applied for a loan to buy a manufactured home succeeded in obtaining financing.³³ Of those who did not obtain financing, the majority were denied.... An estimated <u>42</u> percent of all manufactured home purchase applications were denied, including <u>50 percent</u> of chattel [loan] applications.... In comparison, only <u>7 percent</u> of site-built [loan] applications were denied.... Surface and corresponding cost burdens for consumers potentially remaining in the market, the number of potential manufactured housing purchasers who could qualify for consumer financing would be reduced even further, and the affordability of manufactured housing in relation to site-built and other types of housing would disappear, again in violation of existing law.

³¹ DOE, in its August 26, 2021 SNPR, attempts to discredit NAHB's market exclusion analysis, stating: "DOE reviewed the 2014 NAHB study referenced by MHARR and [the Alabama Manufactured Housing Association] and found the values cited by MHARR and AMHA from that study are not representative of the manufactured housing market's prospective buyers. The NAHB study estimates the reduction in buyers assuming all American households intend to buy a home. *** Rather than analyzing all American households, DOE's estimate in this [SNPR] calculates the number of households no longer able to purchase a manufactured home from the pool of households planning to purchase a manufactured home (which is smaller than the total number of American households)." Instead, DOE relies on a 2007 study by two academics concluding that manufactured housing consumers "are not nearly as price-sensitive" as projected, because the price of manufactured housing will still be below that of site-built housing and "low- and moderate-income families have few [other] low-cost choices for home ownership." See, 86 Federal Register, supra at p. 47797, col.1. (Citations omitted, emphasis added). The sum total of DOE's argument, accordingly, is: (1) they and only they, can somehow magically divine the intent of potential home purchasers and can accurately forecast how many potential purchasers "plan" on purchasing a manufactured home, as contrasted with some other type of home; and (2) that those consumers "planning" to purchase a manufactured home will remain in the market because they have nowhere else to go for affordable housing/homeownership. These arguments are absurd on their face, and not worthy of serious consideration. First, there is absolutely no valid or legitimate empirical basis for DOE to assert who is - or is not - "planning" to purchase a manufactured home, either at current price levels or at the price levels that would result from DOE's proposed standard. Second, DOE's "no alternative" argument is a disgraceful corollary of "let them eat cake." It insultingly assumes that because lower and moderate-income purchasers cannot typically afford higher-priced site-built and other types of homes, they will effectively be forced into remaining in the manufactured housing market due to the lack of alternatives. The reality of the matter, however, is that those consumers would more likely drop out of the housing market altogether and effectively be excluded from homeownership - a point that DOE would prefer to ignore.

³² DOE admits in its August 26, 2021 SNPR that it "is aware of the 2021 CFPB report but has not yet reviewed it in detail" and, "accordingly, did not incorporate any new or additional data from the 2021 CFPB report into" its SNPR analysis. See, 86 Federal Register, supra at p. 47758, col. 1.

³³ This contrasts with a success rate of "74 percent of [loan] applications for site-built homes." <u>See</u>, CFPB Report, supra at p. 4.

³⁴ <u>See</u>, CFPB Report, <u>supra</u> at p. 15. Chattel, or personal property manufactured home purchase loans, moreover, in 2020, represented <u>78%</u> of all manufactured home placements, according to the U.S. Census Bureau.

Furthermore, as the May 2021 CFPR Report emphasizes, the higher level of rejection rates within the chattel or personal property manufactured housing purchase loan sector – which will be significantly exacerbated by the proposed DOE energy standards – will disproportionately impact and harm "Hispanic white, Black and African American and American Indian and Alaska Native borrowers" who make up larger shares of [manufactured home] chattel borrowers than among ... site-built loan borrowers."³⁵"This will especially be the case for "Black and African American borrowers," who are "overrepresented in [manufactured home] chattel lending compared to sitebuilt.³⁶

In summary, then, on cost grounds alone, the IECC, <u>modified or unmodified</u>, is not an appropriate or legitimate code for affordable manufactured homes and cannot be made into an appropriate or legitimate code for manufactured homes through arbitrary and haphazard "modifications." Furthermore, the IECC has been developed – including in its 2021 iteration – pursuant to a voting system that gave final authority over its provisions to state and local building code officials who are not responsible for the development of manufactured housing standards and have not been responsible for such standards since the enactment of the first federal manufactured housing standards law, nearly 50 years ago. Accordingly, the IECC is fundamentally and organically <u>not</u> an appropriate code for manufactured housing and cannot be transformed into one or shoehorned by DOE through changes and modifications around its periphery. Rather, the <u>only</u> appropriate code for manufactured housing is the HUD Code, subject to all applicable law governing its substance and development procedures.

D. DOE'S "TIER ONE" STANDARDS WOULD AFFECT ONLY A FRACTION OF THE MARKET AND COULD BE EXCLUDED FROM A FINAL RULE

DOE, in its August 26, 2021 SNPR, attempts to paper-over these damning purchase price impacts by – at least for now -- bifurcating its proposed standard into two separate "tiers." As explained by DOE, "under the tiered proposal, two sets of standards would be established.... Tier 1 would apply to manufactured homes with a manufacturer's retail list price of \$55,000.00 or less,"³⁷ applying allegedly less costly and more highly-modified 2021 IECC measures to such homes. Tier 2 "would apply to manufactured homes with a manufacturer's retail list price above \$55,000.00"³⁸ and incorporate a broader range of more costly 2021 IECC measures. Significantly, though, DOE's August 26, 2021 SNPR includes, as an "alternative proposal," an "untiered' approach, wherein energy conservation standards for <u>all manufactured homes</u> would be based only on the 2021 IECC."³⁹Put differently, this means that despite all the talk of a "tiered" system, and the use of a tiered proposal to mislead and lure stakeholders, the public and the MHCC into supporting the DOE SNPR, a final rule in this matter could ultimately have <u>no</u> separate cost-based "tiers" at all, and subject <u>all</u> manufactured homes to high-cost market-crushing IECC-based energy standards. For this reason alone, the MHCC should reject the DOE proposed rule. But even assuming that the "tiered" DOE proposal is not a tactical deception that will ultimately be

³⁵ <u>Id</u>. at p. 31.

³⁶ <u>Id</u>.

³⁷ <u>See</u>, 86 Federal Register at pp. 47745-47746.

³⁸ <u>Id</u>. at p. 47746, col.1

³⁹ <u>Id</u>.

withdrawn and discarded, the August 26, 2021 proposed standard would still result in grievous harm to the manufactured housing market, manufactured housing consumers and the manufactured housing industry, with disproportionately destructive impacts on smaller industry producers, retailers, communities and other smaller businesses.

First, the selection of a retail list price of \$55,000.00 as the demarcation line between the "Tier1" proposed standards and the much harsher and more costly "Tier 2" standards appears to be arbitrary and capricious,⁴⁰ and would subject the overwhelming majority of all manufactured homes to the "Tier 2" standards. The most recent U.S. Census Bureau data for manufactured housing, found that the "average" sales price of a single-section manufactured home in 2020, was \$57,300.00.41 Meanwhile, the "average" price of a double-section manufactured home was \$108,500.00 and the "average" price of all manufactured homes was \$87,000.00.42 With material costs having increased in 2021, moreover, these amounts are likely substantially higher today. The \$55,000.00 demarcation line, accordingly, was in 2020 - and is in 2021 -- less than the average price of a single-section manufactured home. Single-section homes, in turn, comprise less than 45% of the total HUD Code manufactured housing market. The overwhelming majority of the HUD Code market in 2021, therefore, is comprised of homes priced in excess of \$55,000.00. As a result, the more costly and burdensome "Tier 2" standards will impact the overwhelming majority of manufactured homes and manufactured housing consumers, with the devastating market consequences detailed above. Accordingly, the "two-tiered" system proposed by DOE - ostensibly to address the devastating market consequences of harsh IECC standards, even as modified by DOE – will have no such ameliorative impact.

Second, and as noted above, <u>at current price levels</u>, only "<u>27 percent</u> of consumers who applied for a loan to buy a manufactured home succeeded in obtaining financing" according to CFPB. This means, conversely, that among households actually seeking to purchase a manufactured home, some 73% of prospective purchasers were <u>denied</u> financing and, presumably, were unable to purchase a HUD Code home (or any home). Insofar, then as the 94,390 HUD Code homes actually purchased in 2020 represent just 27% of the 349,592 homes that potentially <u>could</u> have been purchased in 2020 if all such loan applications had been approved, the 73% of potential manufactured homebuyers <u>rejected</u> for purchase-money financing, represent additional potential sales of 255,202 homes⁴³-- which were <u>not</u> manufactured and sold in 2020 because of the unavailability of financing for lower and moderate-income consumers at those existing price levels. Obviously, then, if manufactured home purchase price levels are substantially <u>increased</u> by punitive and discriminatory DOE energy standards, the approval rate for HUD Code home loans

⁴⁰ The Administrative Procedure Act (APA) authorizes courts to invalidate, among other things, agency rules that are "arbitrary capricious, an abuse of discretion or otherwise not in accordance with law." 5 U.S.C. 706(2)(A).

⁴¹ See, U.S. Census Bureau, "Cost and Size Comparisons: New Manufactured Homes and New Single-Family Site-Built Homes, 2014-2020," attached hereto as Attachment 5.

⁴² DOE, in its August 26, 2021 SNPR similarly admits that it is "aware" of the existence of these figures, but "has not reviewed [them] in detail or incorporated these new data into the analysis presented" in its SNPR. <u>See</u>, 86 Federal Register, <u>supra</u>, at p. 47758, col. 2.

⁴³ The 2021 CFPB Report shows a manufactured home purchase loan approval rate of 27%. Assuming for present purposes that all manufactured homes purchased in 2020 were financed, the 94,390 manufactured homes purchased in 2020 are 27% of 349,592. Thus, 349,592 minus 94,390 equals 255,202 homes that could have potentially been purchased if all loan applications had been approved and represents the market loss due to current pricing levels – a market loss that will be significantly exacerbated by the high-cost DOE proposed energy standards.

(with all other factors being held equal) would fall even further, thereby further depressing sales and utilization levels that continue to run far below historic norms.

Nor do any of these cost calculations even begin to consider the <u>likely impact of future</u> <u>IECC code changes</u>. Insofar as EISA section 413 mandates continuing IECC-based standards updates, and the IECC is currently updated on a three-year schedule, future updates will require further modifications of the DOE standards which, in turn, will require engineering updates and related HUD enforcement system approvals for manufacturers, all of which will entail substantial additional costs and even further destructive market disruptions – none of which has been or will be captured by DOE's alleged regulatory cost analysis.

Again, therefore, the regulatory structure and standards envisioned by DOE would be destructive of the manufactured housing market and would destroy the fundamental affordability of manufactured housing in violation of existing federal law.

III. CONCLUSION

For all the foregoing reasons, as well as those which will be further delineated in subsequent MHARR comments, the MHCC should <u>reject</u> the proposed manufactured housing energy standards set forth in DOE's August 26, 2021 SNPR as being inappropriate for manufactured housing, excessively costly in violation of applicable law, destructive of the affordable manufactured housing market, not cost-justified, and fundamentally arbitrary, and should submit comments reflecting that rejection to DOE in advance of the existing (or any extended) comment deadline.

Sincerely, Mark Weiss

President and CEO

cc: Hon. Jennifer GranholmHon. Marcia FudgeMs. Shalanda Young (OMB)HUD Code Industry Producers, Retailers and Communities

Manufactured Housing Association for Regulatory Reform

1331 Pennsylvania Avenue, NW • Suite 512 • Washington, DC 20004 • 202-783-4087 • Fax 202-783-4075 • mharrdg@aol.com

August 8, 2016

VIA FEDERAL EXPRESS AND ELECTRONIC SUBMISSION

Mr. Joseph Hagerman U.S. Department of Energy Building Technologies Office Mailstop EE-5B 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121

Re: Energy Efficiency Standards for Manufactured Housing <u>Docket No. EERE-2009-BT-BC-0021 – RIN 1904-AC11</u>

Dear Mr. Hagerman:

The following comments are submitted on behalf of the Manufactured Housing Association for Regulatory Reform (MHARR). MHARR is a Washington, D.C.-based national trade association representing the views and interests of producers of manufactured housing regulated by the U.S. Department of Housing and Urban Development (HUD) pursuant to the National Manufactured Housing Construction and Safety Standards Act of 1974 (42 U.S.C. 5401, et seq.) (1974 Act) as amended by the Manufactured Housing Improvement Act of 2000 (2000 Reform Law). MHARR was founded in 1985. Its members include independent manufactured housing producers from all regions of the United States.¹

I. INTRODUCTION

On June 17, 2016, the U.S. Department of Energy (DOE) published a proposed rule in the Federal Register to establish "Energy Conservation Standards for Manufactured Housing," pursuant to section 413 of the Energy Independence and Security Act of 2007 (EISA). (See, 81 Federal Register, No. 117 at p. 39756, et seq.). EISA section 413 -- in derogation of the comprehensive federal regulatory jurisdiction over manufactured housing² construction and safety

¹ <u>All</u> of MHARR's member manufacturers are "small businesses," as defined by the U.S. Small Business Administration (SBA) and "small entities" for purposes of the Regulatory Flexibility Act (5 U.S.C. 601, <u>et seq</u>.).

Administration (SDA) and small entries for purposes of the regulatory relations that controls and small entries of purposes of the regulatory relations, the control of the rest 2 The 1974 Act defines a "manufactured home" as "a structure, transportable in one or more sections, which, in traveling mode, is eight body feet or more in width or forty body feet or more in length, or, when erected on site, is three hundred twenty or more square feet, and which is built on a permanent chassis and designed to be used as a

delegated to HUD under the National Manufactured Housing Construction and Safety Standards Act of 1974 (as amended)³ -- directs DOE to establish "energy efficiency" standards for manufactured housing "based on the most recent version of the International Energy Conservation Code (including supplements), except in cases in which the Secretary finds that the code is not <u>cost effective</u> or a more stringent standard would be more cost effective, based on the impact of the code on the purchase price of manufactured housing and on the total life-cycle construction and operating costs." (Emphasis added). EISA further directs DOE to establish those standards pursuant to: (1) public notice and comment; and (2) "consultation with the Secretary of Housing and Urban Development, who may seek further counsel from the Manufactured Housing Consensus Committee" (MHCC) established pursuant to the Manufactured Housing Improvement Act of 2000.

For the reasons set forth below, MHARR strenuously opposes the proposed rule as an unjustified, destructive and ultimately useless burden on both consumers and the industry including, most particularly, its smaller businesses.

The June 17, 2016 proposed rule is the product of a tainted, non-transparent and fatally defective DOE rulemaking process⁴ that will needlessly undermine the availability of affordable manufactured housing contrary to existing law, exclude millions of lower and moderate-income Americans from homeownership altogether, and stifle free-market competition within the manufactured housing industry -- to the detriment of those same consumers -- by disproportionately harming smaller industry businesses. Insofar as the proposed rule is premised on a factually worthless, incomplete and affirmatively misleading "cost-benefit analysis," a sham standards-development process, non-transparent information inputs on key issues, and violations of the EISA section 413 "consultation" mandate (by both DOE and HUD), any final rule implementing (or derived from) the June 17, 2016 DOE proposed rule would: (1) violate the 1974 Act (as amended); (2) violate the "arbitrary, capricious [or] abuse of discretion" standard of the Administrative Procedure Act ("APA") (5 U.S.C. 706(2)(A)); (3) violate the Negotiated Rulemaking Act (5 U.S.C. 561, et seq.); (4) violate the EISA statute itself; and (5) violate other applicable requirements of law. MHARR, accordingly, seeks the withdrawal of the June 17, 2016 proposed rule and the commencement of an entirely new, legitimate rulemaking process for appropriate manufactured housing energy standards. Absent such action by DOE, MHARR will pursue all available legal remedies to enjoin and/or invalidate any resulting final rule.

dwelling with or without a permanent foundation when connected to the required utilities, and includes the plumbing, heating, air conditioning, and electrical systems contained therein...."

³ HUD's comprehensive federal regulatory jurisdiction over manufactured housing construction and safety <u>already</u> <u>includes</u> – and has included at all times relevant to this matter -- energy standards as codified in Subpart F ("Thermal Protection") of the HUD Manufactured Housing Construction and Safety Standards (24 C.F.R. 3280.501, <u>et seq</u>.)

⁴ MHARR hereby incorporates by reference herein: (1) its March 5, 2010 comments in response to DOE's February 22, 2010 Advance Notice of Proposed Rulemaking in this docket (see, 75 Federal Register, No. 34 at p. 7556, et seq.) (Attachment 1, hereto); (2) its July 24, 2013 comments in response to DOE's June 25, 2013 Request for Information in this docket (see, 78 Federal Register, No. 122 at p. 37995, et seq.) (2013 RFI) (Attachment 2, hereto); and (3) its March 13, 2015 comments in response to DOE's February 11, 2015 Request for Information in this docket (see, 80 Federal Register, No. 28 at p.7550, et seq.) (Attachment 3, hereto).

II. BACKGROUND AND PROCEDURAL HISTORY

With public opinion surveys showing public trust in the federal government at an all-time low,⁵ the June 17, 2016 DOE proposed rule is a textbook illustration of why a majority of Americans have lost faith and confidence in the federal government generally and in federal agencies, such as DOE and HUD, specifically. Purporting to address a "problem" that does not exist,⁶ the DOE proposed rule is a paradigm of over-reaching, oppressive and costly "big government" regulation, that will disproportionately harm lower-income Americans (contrary to stated Obama Administration policy) and crush smaller industry businesses, leading to a further decrease in homeownership (already at record low levels),⁷ higher levels of homelessness,⁸ and an emasculation of free-market competition -- with corresponding retail price increases -- in an industry already verging on <u>de facto</u> monopolization.⁹ Not one of these consumer, industry and societal costs, however - or a <u>multitude</u> of other relevant and significant cost factors - are addressed in DOE's fatally defective and deceptive "cost-benefit analysis," in direct violation of an integral, substantive requirement of EISA section 413.¹⁰

Significantly, DOE's June 17, 2016 Notice of Proposed Rulemaking (NOPR), by ignoring, disregarding and omitting key facts and material information, continues an Agency whitewash of a tortured, corrupted and irretrievably tainted standards-development process for the June 17, 2016 proposed rule. Those key omitted facts – with citations to supporting documents and information -- are set forth below.

⁷ See, e.g., Money Magazine, "Homeownership Hits Another Record Low," (June 24, 2015).

⁵ <u>See</u>, e.g., Gallup, Inc., "Trust in Government" (September 2015) at p.2, showing 61% of respondents having little or no trust or confidence in federal government handling of "domestic issues," the highest such figure since polling began in 1972. <u>See also</u>, Gallup, Inc., "Americans Losing Confidence in All Branches of U.S. Government," (June 30, 2014) showing confidence ratings "for all three branches" of the federal government "are at or near their lowest points to date."

⁶ <u>See</u>, detailed discussion at section III A, pp. 22-24, <u>infra</u>, regarding U.S. Census Bureau data showing – contrary to claims by DOE -- that current-production manufactured homes are already energy-efficient, with median monthly energy costs for fuel oil and natural gas <u>lower</u> than the monthly median for site-built homes and electricity costs closely comparable to the median monthly electricity cost for a site-built home.

⁸ Ironically, publication of the DOE proposed rule -- which, if adopted as a final rule, will exclude millions of lower and moderate income Americans from the benefits and advantages of home ownership (see, detailed discussion and supporting data at sections III B, pp. 25-26 and III C 2, pp. 28-31, <u>infra</u>) - corresponds with HUD's declaration of June 2016 as "National Homeownership Month." In a June 1, 2016 press release, HUD states: "This week, the U.S. Department of Housing and Urban Development kicks off National Homeownership Month by recognizing <u>how</u> <u>homeownership enhances lives and contributes to thriving communities</u> ... [and] that <u>owning a home remains one of</u> <u>the cornerstones of the American Dream</u>." (Emphasis added). For millions of Americans, however, the DOE rule, if adopted, will mean exclusion from homeownership <u>and</u> the American Dream and, potentially, homelessness, for no valid, legitimate or necessary reason.

⁹ <u>See</u>, <u>e.g.</u>, American Banker, "Time to End the Monopoly Over Manufactured Housing" (February 23, 2016) referring to "an uncompetitive market, dominated by Clayton Homes, [Inc.] [Clayton]." Clayton could control 50% or more of the national manufactured housing market in 2016, based on 2015 HUD production statistics and subsequent acquisitions of competing manufacturers in 2016.

¹⁰ Pursuant to the express mandate of EISA section 413(b)(1), the Secretary of DOE is required to make a separate, affirmative finding that each element of the manufactured housing energy standards adopted under section 413(a) is "cost-effective."

A. Initial Development and Selective Leak of the DOE Manufactured Housing Rule

Following the enactment of EISA, DOE initiated a conventional rulemaking proceeding to develop energy standards for manufactured homes. On February 10, 2010, DOE published an Advance Notice of Proposed Rulemaking (ANPR) in the Federal Register (see, 75 Federal Register, No. 34 at pp. 7556-7557) seeking public comment on thirteen general issues. MHARR submitted written ANPR comments to DOE on March 10, 2010.

In its ANPR comments, MHARR urged DOE, in light of the drastic decline of the manufactured housing market to historically low production levels after the enactment of EISA,¹¹ to "delay the development, implementation and enforcement of any new manufactured home energy conservation standards that are not identical to the existing HUD Code energy standards until such time as industry production levels and the availability of affordable, non-subsidized manufactured housing for lower and moderate-income consumers return to pre-2007 levels." In addition, MHARR raised three separate issues related to the substance of any DOE manufactured housing energy standards that could <u>further</u> undermine the affordability and availability of manufactured homes, with little or no corresponding benefit to consumers. In relevant part, MHARR stated:

- (1) "...manufactured homes are already subject to HUD energy conservation standards that result in a relatively tight thermal envelope, consistent with overall affordability and are carefully balanced against concerns related to air exchange and condensation within the home living space. Any change to the standards could upset that balance with ... negative consequences."
- (2) "With ... manufactured housing consumers unable to obtain or qualify for financing <u>now</u>, matters would be much worse if the purchase price of manufactured homes were unnecessarily increased ... due to DOE energy regulations."
- (3) "...the federal government should not impose costly new energy mandates combined with a totally new DOE enforcement system that would parallel the existing HUD system." "...HUD ... is best suited to fully assess and ensure the affordability aspects of energy regulation within the context of the HUD Code and maintain the delicate balance between regulation and affordability that is embedded in relevant federal law."

Subsequent to publication of the ANPR – and without addressing or resolving any of the substantive issues identified by MHARR -- DOE developed a "draft proposed rule" for manufactured housing energy standards (2011 draft proposed rule). That "draft proposed rule" was then selectively leaked to interested parties, including the Manufactured Housing Institute (MHI) -- a Washington, D.C. organization representing the manufactured housing industry's largest businesses (and later a participant in the DOE "negotiated rulemaking" Manufactured Housing

¹¹ After reaching a modern production record of 374,143 homes in 1998, total industry production of HUD-regulated manufactured homes (as calculated and reported by HUD) fell to a record low of 49,683 homes in 2009, following the enactment of EISA, and has only recovered at a modest pace since that time, reaching 70,544 homes in 2015.

Working Group) -- as indicated by published May 29, 2012 correspondence from MHI to DOE referring to <u>specific</u> requirements and provisions of a "draft proposed DOE rule" and "draft DOE standards" that were not included in the 2010 ANPR, had not been published as a proposed rule, and had not otherwise been made public.¹²

In a July 20, 2012 communication to DOE, MHARR called for a DOE/HUD investigation of the selective leak of the 2011 "draft proposed" DOE energy rule to MHI and other parties in interest, to determine, among other things: (1) how the proposed rule was selectively leaked; (2) who was responsible for that selective leak; and (3) what other parties in interest, if any, were provided inside information concerning this significant rulemaking.¹³ MHARR was subsequently contacted by a DOE official, Michael Erbesfeld,¹⁴ who verbally denied any leak.

Subsequent admissions by DOE, however, as well as documents produced by DOE pursuant to MHARR Freedom of Information Act (FOIA) requests, show: (1) that this official denial by DOE was false; (2) that a selective leak of a "draft proposed" DOE manufactured housing energy rule to interested parties did, in fact, occur;¹⁵ and (3) that selective leaks of that "draft proposed rule" were made to multiple subsequent members of the DOE "negotiated rulemaking" Manufactured Housing Working Group (MHWG)¹⁶ which – together with other continuing, undisclosed contacts and coordination between such recipients and DOE¹⁷ – fundamentally tainted that entire process.

B. OMB/OIRA Rejection of DOE "Draft Proposed Rule" and "Start Over" Directive

On June 25, 2013, DOE abruptly published a Request for Information (2013 RFI) concerning manufactured housing energy standards, focusing specifically on the three issues (above) that MHARR had identified in its ANPR comments (i.e., air exchange and condensation, the availability of consumer financing and the enforcement structure and authority for the rule). (See, 78 Federal Register, No. 122 at p. 37995, et seq.). MHARR, in its RFI comments, stressed that the 2013 RFI – seeking information on key aspects of any manufactured housing energy rule – had obviously been prepared and issued after the development of the 2011 "draft proposed rule." As a result, MHARR asserted that the 2011 DOE "draft proposed rule" had necessarily been developed without full and complete information as required by the APA and EISA section 413, itself, and amounted to a predetermined regulatory fait accompli, based on undisclosed

¹² <u>See</u>, Attachment 4, hereto. That MHI correspondence states, in part, that "the draft DOE standards requires (sic) homes to be tested in the factory" and that "separate testing is required for to measure duct leakage, whole house (building shell) tightness and air infiltration rates for each window." No such details were included in the 2010 ANPR or otherwise published or disclosed to the public. Similarly, the May 29, 2012 MHI correspondence refers to a DOE estimate of a "total cost burden to the industry [of] \$4.5 million over four years." Again, no such information was provided in the 2010 ANPR or otherwise disclosed to the public. Indeed, the 2010 ANPR specifically acknowledged that it contained no regulatory impact analysis (RIA), stating: "DOE intends to develop a regulatory impact analysis ... as this rulemaking process proceeds."

¹³ See, Attachment 5, hereto.

¹⁴ <u>See</u>, Attachment 6, hereto, produced by DOE pursuant to a May 5, 2015 MHARR FOIA request, indicating that as of August 24, 2011, Mr. Erbesfeld was the "new project manager on (sic) the DOE manufactured housing standards." ¹⁵ <u>See</u>, discussion at section II C, p. 10, infra.

¹⁶ Id.

¹⁷ See, detailed discussion at section II C, pp. 8-14, infra.

communications and input from select, "insider" parties in interest, including MHI and the industry's largest corporate conglomerates, among others.¹⁸ MHARR's comments thus concluded: (1) that the entire manufactured housing rulemaking had been irretrievably tainted by the selective leak of the 2011 DOE "draft proposed rule" to parties in interest; (2) that DOE, therefore, was required to "discard" that "draft proposed rule" in its entirety; and (3) that DOE had to "begin anew its entire process for the development" of that rule. In part, MHARR stated:

"Now, <u>after</u> the preparation and selective disclosure of a 'draft proposed rule,' complete with a regulatory (cost) impact analysis, DOE, through its June 25, 2013 'Request for Information,' is seeking information concerning the three issues <u>initially raised by MHARR in 2010</u>.... While MHARR commends [DOE] for finally seeking information and data concerning these crucial issues for both the industry and consumers, [DOE's] request for such information <u>after</u> the preparation of a draft proposed rule <u>turns the regulatory process on its head and raises serious issues regarding the legitimacy and integrity of this entire proceeding.... Accordingly, DOE ... should ... <u>begin anew its entire process for the development of this rule from the start</u>, based, this time, on a proper review and consideration of all ... relevant information.¹⁹</u>

(Emphasis added and in original).

Unbeknownst to MHARR at the time of the 2013 RFI and its comments calling for the DOE rulemaking process to be started "anew" – and not publicly disclosed by DOE until <u>after</u> the inception of its sham "negotiated rulemaking" process -- the DOE 2011 "draft proposed rule" had been forwarded to the Office of Management and Budget's (OMB) Office of Information and Regulatory Affairs (OIRA) on October 14, 2011 for review pursuant to Executive Order 12866,²⁰ and had been <u>rejected</u> by OMB/OIRA with specific instructions to DOE to "<u>begin the [rulemaking]</u> process anew," as had been sought by MHARR in its 2013 RFI comments.²¹

Contemporaneously -- and consistent with its pervasive pattern of obfuscation and deception concerning this rulemaking -- DOE first attempted to obstruct and then falsely denied the existence of documents responsive to an October 22, 2013 MHARR Freedom of Information Act request seeking, among other things, the production of "any and all correspondence or other communications received by DOE regarding [the 2011 manufactured housing] 'proposed rule' including, but not limited to, communications from any party to whom the said 'draft proposed rule' had been provided."²² After initially quoting a clearly excessive fee to process MHARR's request (in order to discourage MHARR from proceeding), DOE, on February 18, 2014, denied that it possessed any "responsive" materials.²³ DOE, however, responding to MHARR FOIA

¹⁸ <u>See</u>, section II D, pp. 14-18, <u>infra</u>, regarding DOE's manipulation of supposed "research" contracts to, among other things, "partner" with the manufactured housing industry's largest manufacturers – characterized as "progressive plants" -- to "drive the adoption" of extreme, unnecessary and costly DOE standards.

¹⁹ See, Attachment 2, hereto at pp. 3-4.

²⁰ See, Attachment 7, hereto, produced by DOE pursuant to MHARR's May 5, 2015 FOIA request, confirming submission of the "draft proposed" manufactured housing energy rule to OIRA on October 14, 2011.

²¹ See, detailed discussion at section II C, pp. 10-11, infra and Attachment 16, infra.

²² See, Attachment 8, hereto.

²³ See, Attachment 9, hereto, at p. 2.

requests filed <u>after</u> the conclusion of its sham "negotiated rulemaking" process, has produced multiple documents that would have been responsive to this request including, but not limited to, an email communication dated March 14, 2012 from MHI's Vice President for Regulatory Affairs (and a subsequent MHWG member), to DOE attorneys referencing a "meeting with OMB last week" on the DOE 2011 "draft proposed" manufactured housing rule and a follow-up <u>ex parte</u> DOE tour of an MHI-member manufacturing facility,²⁴ as well as an email communication from subsequent MHWG member Michael Lubliner to DOE stating, in part, "I have attached a document from MHI to DOE. <u>Does MHI have access to draft rules (maybe from OMB) that many</u> other stakeholders have not seen?" (Emphasis added).²⁵

The proper and timely disclosure of these documents – and others -- <u>prior</u> to the inception of "negotiated rulemaking," would have: (1) confirmed the selective leak of the 2011 DOE "draft proposed rule" during the 2011-2012 timeframe; (2) exposed ongoing insider contacts between MHI (and other parties in interest) and DOE officials regarding the 2011 DOE "draft proposed rule;" and (3) would have ultimately alerted MHARR (and others) to DOE-"insider" coordination regarding the referral of this matter to "negotiated rulemaking" in sufficient time to object to – and seek to enjoin – any such referral or continuation of the pending manufactured housing rulemaking process. DOE's false denial of the selective leak of the 2011 "draft proposed rule" and MHARR's July 20, 2012 request for a DOE investigation, and its February 18, 2014 denial of the existence of responsive documents pursuant to MHARR's October 22, 2013 FOIA request, have materially prejudiced MHARR's rights -- and the rights of other opponents of the June 17, 2016 proposed rule -- in ways that, in and of themselves, would warrant judicial relief in the event that DOE proceeds with a final rule based on that proposal.

More importantly, though, the selective leak of the 2011 DOE "draft proposed rule" to MHI and others has <u>irretrievably</u> tainted this rulemaking, insofar as it: (1) provided the industry's largest corporate conglomerates – <u>interested parties in this rulemaking</u> – with "insider" information not available to other stakeholders regarding the approach, the substance, the expected enforcement mechanisms and the expected costs of DOE standards for manufactured housing pursuant to EISA section 413,²⁶ with no evidence whatso ever, to show that the 2011 DOE "draft proposed rule" differs materially from the 2016 proposed rule; and (2) even more significantly, provided the select recipients of that "impermissibly disclosed" draft proposed rule with a fundamentally biased and discriminatory opportunity – not offered to other affected stakeholders – to provide input to DOE and to influence and impact the content of that rule with, again, no

²⁴ See, Attachment 10, hereto.

²⁵ See, Attachment 11, hereto, at p. 2.

²⁶ Attachment 4, hereto, <u>supra</u>, makes it clear that MHI had been provided access to cost-benefit calculations for the 2011 DOE "draft proposed rule." Moreover, a copy of the table of contents for the DOE 2011 "draft proposed rule" (<u>see</u>, Attachment 12 hereto) -- provided to MHARR in 2012 by an MHI-affiliated recipient of the selectively leaked draft proposed rule -- includes "Compliance and Enforcement" provisions ("Subpart E"), the substance of which was obviously disclosed to the select recipients of that draft rule. Because DOE has yet to publicly propose compliance and enforcement from the "negotiated rulemaking" conducted through the MHWG, it is entirely conceivable that there will be no difference between the 2011 compliance and enforcement provisions and the compliance and enforcement provisions ultimately proposed for the 2016 rule, exposing again, the insidious, discriminatory and unlawful continuing advantage conferred by DOE on the select recipients of the "impermissibly disclosed 2011" draft proposed rule" at the expense of all other interested parties in this rulemaking. <u>See also</u>, note 31, <u>infra</u>.

evidence whatsoever, to show that the 2011 DOE "draft proposed standard" differs from the 2016 proposed rule in any material respect. The full extent of this illegitimate, biased and discriminatory activity, moreover – and its impact on the current pending DOE manufactured housing energy standards rule – remains the subject of an ongoing cover-up by DOE, which has refused to release either the text of the 2011 "draft proposed rule," or cost-benefit analyses of that rule provided to the select leak recipients and OMB/OIRA.²⁷

C. Referral to Sham "Negotiated Rulemaking"

No subsequent <u>public</u> activity on the DOE manufactured housing rule occurred until June 6, 2014, when DOE's obscure Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) voted – with no advance <u>public</u> explanation – to establish a "negotiated rulemaking" process with interested parties (<u>i.e.</u>, the "Manufactured Housing Working Group") to develop EISA section 413 manufactured housing standards under a <u>two-month</u> completion deadline that was <u>clearly inadequate</u> to achieve the "fresh start" directed by OMB/OIRA on a complex, "significant" federal regulation.²⁸ The OMB/OIRA "fresh start" directive, however, had not been publicly disclosed by DOE prior to – or at the time of – the ASRAC vote to impose this truncated, impossibly brief deadline.

Multiple documents produced by DOE after-the-fact, however (as well as subsequent DOE <u>admissions</u>), prove that this seemingly random, "out-of-the-blue" ASRAC action resulted from specific non-transparent <u>ex parte</u> coordination between DOE, MHI and other "insider" recipients of the selectively leaked 2011 DOE "draft proposed rule:" (1) to effectively circumvent and negate OMB/OIRA's directive to DOE to start-over the manufactured housing rulemaking process from the beginning; (2) to establish a sham "negotiated rulemaking" process dominated by DOE-favored "insider" recipients of the selectively leaked 2011 "draft proposed rule;" and (3) to produce a pre-ordained regulatory result.

²⁷ <u>See</u>, text at pp. 11-12, <u>infra</u>, regarding DOE's refusal to release the 2011 "draft proposed rule" during the MHWG "negotiated rulemaking" process. DOE has also refused to produce either the 2011 "draft proposed rule," or costbenefit information developed for that rule in response to multiple MHARR FOIA requests, asserting that those documents are "pre-decisional" in their entirety and, therefore, exempt from disclosure under FOIA. DOE, moreover, has refused to exercise its discretion to waive that privilege, notwithstanding direct guidance from the Attorney General "strongly encourag[ing] agencies to make discretionary disclosures of [otherwise exempt] information," <u>i.e.</u>, to voluntarily waive otherwise applicable FOIA exemptions. <u>See</u>, Department of Justice Guide to the Freedom of Information Act – Discretionary Disclosure and Waiver at p. 685, note 2.

²⁸ Pursuant to Executive Order 12866, OIRA is responsible for determining which agency regulatory actions are "significant." Significant regulatory actions are defined in the Executive Order as those that, inter alia, "have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities...." OIRA would not have reviewed the 2011 DOE "draft proposed" manufactured housing rule, had it not found that rule to be a "significant" rule.

Specifically, a February 17, 2014 email to Roland Risser, Director of the Building Technologies Office (BTO)²⁹ in DOE's Office of Energy Efficiency and Renewable Energy (EERE) -- the DOE office with responsibility for this rulemaking – from Robin Roy, Director of the Natural Resources Defense Council's (NRDC) Building Energy Efficiency and Clean Energy Strategy Program³⁰ (and subsequent MHWG member) on behalf of the aforesaid "insiders," demonstrates the coordination between DOE officials and those same "insiders" to use a truncated, tightly-controlled and pre-scripted ASRAC/MHWG process to effectively validate and legitimize the OMB/OIRA-rejected 2011 "draft proposed rule." In relevant part, that previously undisclosed, ex parte email states:

"Hi Roland,

After talking to several interested parties including other efficiency advocates and <u>industry leaders</u>, I find general support and no opposition to using ASRAC to inform the manufactured housing standards process under conditions like these:

- DOE uses the process for effective communication and data gathering, <u>rather</u> than for seeking <u>unanimous consent</u>...;
- DOE commits to a <u>tight schedule (e.g., 2 2-day meetings within 4 months of ASRAC authorization</u>, and <u>perhaps tables the draft NOPR and TSD³¹for initial discussion at the first meeting</u>, possibly with some redaction of elements they consider grossly inadequate or distracting);
- Any additional meetings would only be proposed with the approval of ASRAC...."

(Emphasis added).

²⁹ <u>See</u>, section II D, <u>infra</u>, at pp. 14-18, detailing BTO's manipulation and abuse of DOE "research" contracts to improperly influence the ASRAC manufactured housing "negotiated rulemaking" process through a financial conflict of interest.

³⁰ The selection of Robin Roy to coordinate with DOE on behalf of the DOE-favored "insiders" was not coincidental. Robin Roy, at all times relevant to this proceeding, was the husband of Ms. Cathy Zoi (Zoi), the Assistant Secretary for Energy Efficiency and Renewable Energy at DOE until March 10, 2011. <u>See</u>, "Obama Official Leaves Energy Department for Soros-Backed Cleantech Fund," CNBC (February 24, 2011) ("Zoi, who joined the Obama Administration in 2009, became controversial during early 2010, after it was realized she had a financial interest in two companies that were poised to profit from government spending that promoted energy efficiency.") Following completion of the DOE "negotiated rulemaking" process, in January 2015, Mr. Roy -- with no other apparent background related to manufactured housing -- was appointed by HUD to the Manufactured Housing Consensus Committee notwithstanding the mandate of section 604(a)(3)(B)(i) of the 2000 reform law, that MHCC appointees be "qualified by background and experience to participate in the work of the consensus committee." <u>See</u>, 42 U.S.C. 5403(a)(3)(B)(i). Under EISA section 413, DOE is required to "consult" with the Secretary of HUD regarding manufactured housing standards and the Secretary of HUD, in turn, is authorized to "seek further counsel" from the MHCC.

³¹ The existence of a Technical Support Document (TSD) for the 2011 DOE "draft proposed rule" is not mentioned in any other document provided to MHARR. The reference to a TSD in this <u>ex parte</u>, "insider" communication is thus a further indication of undisclosed coordination between DOE and the DOE-favored "insider" group.

This exchange demonstrates: (1) communication and coordination between DOE officials and the DOE-favored "insider" group on a non-transparent, <u>ex parte</u> basis; (2) to create the structure for a sham "negotiated rulemaking" through ASRAC; (3) that was designed to be controlled by DOE and those same DOE-favored "insiders;" (4) that was designed to suppress the effective participation of non-"insiders;" (5) within a clearly inadequate time-frame for a fresh start as mandated by OMB/OIRA; (6) using the 2011 DOE "draft proposed rule" (<u>i.e.</u>, "NOPR") and undisclosed Technical Support Document (<u>i.e.</u>, "TSD") for that 2011 "draft proposed rule" as the <u>undisclosed</u> basis for the activity of the "working group;"³² (7) subject to <u>undisclosed</u> "redactions" by DOE.

The same type of <u>ex parte</u> coordination between DOE and the DOE-favored "insider" group to establish a severely-truncated MHWG timeframe and schedule clearly inadequate to legitimately achieve the "fresh start" mandated by OMB/OIRA for a "significant" rule, is reflected in a previously undisclosed May 21, 2014 email exchange between Robin Roy and John Cymbalski, the DOE Designated Federal Official (DFO) for ASRAC:

"[Roy]: Hi John. In your role as ASRAC DFO, can I send you a letter ... in support of an ASRAC working group on manufactured housing, with diverse signers from our regular MH discussion group...?

[Cymbalski]: That would be great to have sooner than later.

[Roy]: Super, I've asked my group to sign on by COB Tuesday, so aim to send on Wednesday, May 28 [2014].

[Cymbalski]: <u>How much time do you anticipate asking for in terms of negotiating a NOPR [i.e.</u>, Notice of Proposed Rulemaking]?

[Roy]: Short. 2 meetings would be great. But we won't be specific in the letter."

(Emphasis added).33

Subsequently, and in accordance with the February 17, 2014 and May 21, 2014 email exchanges above, MHI, NRDC and other interested parties later appointed by DOE as voting members of the "negotiated rulemaking" MHWG, submitted a joint written request to ASRAC on May 28, 2014 for "negotiated rulemaking" on manufactured housing energy standards utilizing a working group under ASRAC-auspices, to be held "to <u>a tight meeting schedule with a minimum number of meetings, e.g., 2 two-day meetings to be concluded by September [2014]" – i.e., within less than two months of the first meeting of the MHWG on August 5, 2014. (Emphasis added).³⁴</u>

³² Absent full and complete disclosure by DOE – which, as demonstrated <u>infra</u>, did not occur -- only insiders would know if any document or proposal presented to the MHWG was, either in whole or in part, the 2011 DOE "draft proposed rule."

³³ See, Attachment 13, hereto, produced by DOE pursuant to MHARR's May 5, 2015 FOIA request.

³⁴ See, Attachment 14, hereto, produced by DOE pursuant to MHARR's May 5, 2015 FOIA request. MHI also submitted a separate request to DOE for "negotiated rulemaking" through ASRAC on March 14, 2014. This separate request incorporates the same restrictive elements as the Robin Roy Communication with Roland Risser and the

With this clearly inadequate timeframe and sham structure/process established, DOE proceeded to appoint a "Working Group" dominated by the same DOE-favored insiders that – with the exception of MHARR -- had been recipients of the selectively leaked 2011 "draft proposed rule" and had coordinated internally and with DOE to seek and advance the sham, truncated, "negotiated rulemaking." The MHWG thus included five representatives of energy special interest groups and <u>nine</u> MHI officers, member companies and/or affiliates (including representatives of two of the industry's three largest manufacturers) out of 20 non-DOE/non-ASRAC appointees.³⁵

At the initial meeting of the manufactured housing negotiated rulemaking "Working Group" (August 5, 2014), MHARR requested full disclosure of the selectively leaked DOE 2011 "draft proposed" manufactured housing energy standards rule, as well as any factual analyses related to that "draft proposed" rule, to determine whether the MHWG, working under an impossibly constrained timeframe was, in fact, "starting over" as mandated by OMB/OIRA, or was established instead to circumvent that directive and function as a fig leaf to re-process and legitimize the substance of the selectively leaked DOE 2011 "draft proposed rule."³⁶ Once again, consistent with DOE's overall pattern of obfuscation and non-transparency concerning this rulemaking, that request was <u>denied</u> by DOE as reflected by the meeting transcript:³⁷

"Mr. Weiss [MHARR]: What I'm referring to is ... the draft proposed [2011] rule developed by DOE and –

Mr. Cymbalski [DOE]: Yeah, we are not going to hand out anything.

Mr. Weiss [MHARR]: And any – well, let me just finish – any related analysis.

Mr. Cymbalski [DOE]: Right, we're not going to -- we're not - we've moved past that, right, so we're going to have all new data, all new numbers, and we will provide that as a basis to talk about.

Mr. Weiss [MHARR]: Well ... [y]ou say its history and that's fine, but <u>I don't</u> <u>know if its history or not</u>, okay, I don't know - I don't know what it was and how it might relate to where we start from here. So I understand you're saying its history but I don't know one way or the other. And I think to have a clear record in this

subsequent May 28, 2014 joint request letter, including "a tight time schedule with a minimum of meetings." See, Attachment 15, hereto.

³⁵ <u>See</u>, "Notice of Membership of the Working Group for Manufactured Housing," 79 Federal Register, No. 136 (July 16, 2014) at p. 41457, col. 1. The only "no" vote against the MHWG "Term Sheet" underlying the proposed rule was cast by MHARR's representative.

³⁶ A copy of the table of contents for the DOE 2011 "draft proposed rule" (<u>see</u>, Attachment 12 hereto, <u>supra</u>), when compared to the table of contents for the June 17, 2016 DOE proposed rule, shows that <u>eight</u> of ten substantive headings (not including enforcement and compliance-related headings in the 2011 "draft proposed rule," insofar as enforcement and compliance matters have been excluded from the June 17, 2016 NOPR by DOE fiat) are either identical or nearly identical. Such direct overlaps include, "climate zones;" "building thermal envelope requirements," "building thermal envelope air leakage," "duct systems," service water heating" and "ventilation," among others.

³⁷ See, Attachment 16, hereto, MHWG August 5, 2014 meeting partial transcript.

proceeding, given the fact that DOE spent some time working on this prior to this proceeding and then we're only talking about two months here potentially, <u>I think</u> we need to see where you were before and where we're going in relation to that.

(Emphasis added).

An attorney from DOE's Office of General Counsel (OGC) subsequently made key admissions concerning previously undisclosed information relating to the selective leak of the DOE 2011 "draft proposed rule," OMB/OIRA's "start over" directive, and the subsequent referral of this matter to "negotiated rulemaking:"

Mr. Jensen [DOE]: [T]his is Mike Jensen from DOE GC [Office of General Counsel]. *** As far as we're concerned, the document that was sent to OIRA in October 2011 is still a pre-decisional document. <u>I understand that it was impermissibly distributed to many people in this [MHWG] room</u>. But as far as we're concerned, that that's history. <u>We're starting – we're hitting the reset button and we're beginning negotiations again today</u>. That information, the proposed rule and the accompanying documents are still pre-decisional at this point, will not be distributed outside of DOE.³⁸

Mr. Jensen [DOE]: In October of 2011, DOE transmitted our pre-decisional draft of the rulemaking at that time to the Office of Management and Budget. There's a section in OMB, the Office of Information and Regulatory Affairs, which is OIRA. That document was never intended to be released to the public and was for OMB's review. <u>That document has since been kicked back to DOE to – with the instructions</u> to begin the process anew, so that's why we're here today."

(Emphasis added).

These admissions, and the attachments hereto, establish the following – <u>none of which is</u> reflected in the DOE June 17, 2016 NOPR:

1. The unlawful, biased and discriminatory "impermissible distribution" of the 2011 DOE "draft proposed" manufactured housing energy standards rule to selected parties in interest;

2. DOE's <u>false</u> denial of that "impermissible distribution" and disclosure to select "insiders" in response to MHARR's July 20, 2012 inquiry to DOE and call for an investigation;

3. DOE's <u>false</u> denial that it possessed documents responsive to MHARR's October 22, 2013 FOIA request;

³⁸ DOE, accordingly, has refused to release publicly – or to parties with a specific interest in the credibility and legitimacy this matter, such as MHARR – a <u>critical</u> document that was selectively and by DOE's own admission, "impermissibly" disclosed previously to DOE-favored "insiders."

4. DOE's deceitful failure to admit or acknowledge the "impermissible distribution" of the draft rule to selected parties in interest, including MHWG member organizations, until <u>after ASRAC</u> authorization of negotiated rulemaking and creation of the Working Group;

5. Undisclosed, non-transparent <u>ex parte</u> DOE contacts with select recipients of the "impermissibly distributed" 2011 DOE "draft proposed rule" regarding negotiated rulemaking and the parameters of negotiated rulemaking regarding a manufactured housing energy standards rule;

6. Failure to specifically identify recipients of the 2011 DOE "draft proposed rule;"

7. Failure to disclose any information, materials, comments or input (either written or verbal) received by DOE from these unidentified recipients of the DOE 2011 "draft proposed rule;"

6. Failure to disclose until <u>after</u> ASRAC authorization of negotiated rulemaking and creation of the MHWG, that the May 28, 2014 communication which triggered ASRAC consideration and approval of negotiated rulemaking and creation of the Working Group – and related communications -- was submitted either wholly or in substantial part by select recipients of the "impermissibly distributed" 2011 DOE "draft proposed rule;"

7. Failure to disclose in advance the appointment of recipients (or parties affiliated with recipients) of the "impermissibly distributed" 2011 DOE draft rule as voting members of the MHWG;

8. Failure to disclose OMB/OIRA's rejection of the DOE draft rule and directive to DOE to "begin the [rulemaking] process anew" until <u>after ASRAC</u> authorization of negotiated rulemaking and formation of the MHWG under a two-month deadline;

9. Failure to disclose the specific basis for OMB/OIRA's rejection of the draft rule and directive to start over;

10. DOE's continuing failure to disclose the DOE 2011 "draft proposed rule" itself and related cost information; and

11. DOE's failure to disclose or explain how a negotiated rulemaking process with "2" meetings -- as coordinated by DOE and parties in interest in undisclosed, <u>ex</u> <u>parte</u> communications -- could be consistent with OMB/OIRA's "start over" directive regarding a rule that had been under development at DOE for <u>seven years</u> --

--among other things.

Indeed, despite <u>repeated</u> FOIA requests by MHARR, DOE has failed to disclose the specific content of multiple <u>ex parte</u> communications that it clearly had with MHI and other select

recipients of the "impermissibly disclosed" 2011 DOE "draft proposed rule" regarding the substance of that proposal, or any input or information that it received from or on behalf of those same parties regarding the draft proposed rule. Thus, while the underlying selective leak of the 2011 DOE "draft proposed rule" has been documented and confirmed, together with the coordinated and contrived nature of the referral of this matter to a sham "negotiated rulemaking" process dominated by the same DOE-favored "insiders" in order to circumvent OMB/OIRA's "start over" directive and railroad a manufactured housing standard through a DOE "appliance" standards committee, DOE has never disclosed – and continues to cover-up: (1) when the "proposed draft rule" was selectively leaked to MHI and other parties in interest; (2) if the 2011 "proposed draft rule" was developed in the first instance based on undisclosed input from selective leak recipients; (3) whether the 2011 "proposed draft rule" was revised after DOE receipt of undisclosed input from selective leak recipients – and, if so, how; (4) what the substance of that input was; (5) the specific provisions and text of the 2011 "draft proposed rule;" and (6) how those provisions (and the TSD and cost-benefit analysis for that "draft proposed rule") relate to or correspond with the June 17, 2016 DOE proposed rule.

In each such instance – and cumulatively – DOE's failure to disclose relevant facts concerning this proceeding, ultimately leading to the June 17, 2016 DOE proposed rule, has materially prejudiced the rights of MHARR, its members, other manufactured housing industry members and consumers, and other actual and potential opponents of DOE manufactured housing energy regulation, to object and seek judicial relief regarding a contrived, manipulated and scandalous standards development process. At the same time, <u>ex parte</u> contacts, communications and coordination between DOE, MHI and other select DOE-favored "insiders" – including the manufactured housing industry's largest corporate conglomerates – have given those parties an improper advantage, undue influence, and an "inside track" regarding the development of the June 17, 2016 proposed rule. This fundamentally tainted process – cited, in part, by MHARR's MHWG representative in casting the lone "no" vote against the MHWG Term Sheet –- necessarily invalidates this proceeding.

D. MHWG Financial Conflicts of Interest – DOE Contract Manipulation

In conjunction with DOE's referral of this matter to a contrived, sham "negotiated rulemaking" process – with an ongoing DOE cover-up of the selectively leaked 2011 rule and related cost-benefit analysis – DOE also coordinated, via supposed "research" contracts with MHI-affiliated and/or linked organizations, to covertly influence the MHWG "negotiated rulemaking" process. These contracts, which were never disclosed by DOE to non-"insider" MHWG participants or other stakeholders in the DOE manufactured housing energy rulemaking, have produced a financial conflict of interest that fatally infects the entire "negotiated rulemaking" process and, as a result, all aspects of this rulemaking.

The June 17, 2016 NOPR expressly states that the DOE proposed rule is "based on the negotiated consensus recommendations of the [MHWG]."³⁹Those recommendations, however, and the MHWG "Term Sheet" that became the basis for the June 17, 2016 proposed rule, resulted from specific technical and "cost" inputs provided by the Systems Building Research Alliance

³⁹ See, 81 Federal Register, No. 117 at p. 39756, col. 1.

(SBRA) – an MHI "research" affiliate and MHWG member. SBRA, however, at all times relevant to this rulemaking, shared an interlocking employee/corporate officer structure with "The Levy Partnership" (TLP), <u>a paid DOE subcontractor</u>⁴⁰ and grant beneficiary.⁴¹

As an initial matter, the cost data underlying the MHWG "Term Sheet" and the June 17, 2016 proposed rule – provided to the MHWG by SBRA and MHI during the supposed "negotiated rulemaking" process, has been – and remains, an entirely non-transparent critical data input in this rulemaking. Specifically, the source(s) of the cost data offered by SBRA and MHI – involving alleged costs to manufacturers to implement energy efficiency measures mandated by the MHWG Term Sheet recommendations – has never been disclosed. Disclosure of the source(s) of that "data," as requested by MHARR during the MHWG process, was refused and has never been provided to date – either directly by SBRA/MHI or by DOE. This critical non-transparent data input raises two related issues.

First, given the direct and ongoing financial conflict of interest between DOE and TLP/SBRA, the credibility of any such data – at a minimum – is open to question. Second, even if that data exists and has not been altered or modified in some manner, it has never been tested or verified by any other interested or independent party, or – based on the June 17, 2016 NOPR – by DOE, to determine its accuracy, veracity, and/or relevance, <u>i.e.</u>, whether it reflects representative costs for all manufacturers, regardless of size and production, or whether it represents primarily – or <u>only</u> – costs relevant to larger manufacturers (represented by MHI) which pay lower supply costs based on volume discounts and superior bargaining strength within the supply market. Indeed, significantly higher cost impacts as calculated by MHARR,⁴² would indicate that those alleged costs are, at best, materially skewed and <u>cannot</u> provide a reliable, legitimate and lawful basis for <u>any</u> of DOE's cost calculations that are necessary to fully comply with EISA section 413^{43} and the APA. But full and complete disclosure regarding those key information inputs has never been provided by either DOE, MHI, or SBRA, and is not contained in the June 17, 2016 NOPR.

⁴³ <u>See</u>, note 10, <u>supra</u>.

⁴⁰ The Levy Partnership, Inc. is a California corporation, established in 1983. The Executive Director of SBRA is simultaneously publicly identified as President of TLP. Similarly, the publicly-identified Vice President of TLP is simultaneously identified as a "Senior Project Coordinator" for SBRA. (See, Attachment 17, hereto). MHARR research has disclosed at least three DOE-TLP subcontracts funneled through DOE's National Renewable Energy Laboratory (NREL), designated KNDJ-0-40347-00, KNDJ-0-40347-03 and KNDJ-0-40347-05. See also, note 45, infra.

⁴¹ In addition to the contracts/subcontracts cited herein, TLP was also awarded part of a \$4 million DOE grant announced on May 5, 2015 to "develop and demonstrate new energy efficient solutions for the nation's homes." <u>See</u>, DOE News Release, "Energy Department Invests \$4 million to Strengthen Building America Industry Partnerships for High Performance Housing Innovation (May 5, 2015). Consequently, after coordinating with DOE to develop and advance extreme, high-cost energy mandates on the manufactured housing industry, SBRA's alter ego, TLP (with overlapping employees and corporate officials), was rewarded by DOE with a "research" grant to develop the systems and methodologies to comply with those (and similar) mandates. (MHARR also notes with interest that a portion of the same grant was awarded to Home Innovation Research Labs, Inc. (HIRL), the supposedly "independent" Administering Organization (AO) of the HUD Manufactured Housing Consensus Committee (MHCC)).

⁴²See, Attachment 18, hereto, an MHARR calculation of basic retail-level manufactured housing price increases attributable to specific elements of the June 17, 2016 DOE proposed rule, showing a cost increase of \$5,825.17 for a multi-section manufactured home and \$4,601.94 for a single-section home.

More importantly, a 2015 document issued through DOE's Office of Energy Efficiency and Renewable Energy (EERE) provides direct evidence of DOE's manipulation of supposed energy "research" awards, grants, contracts and other taxpayer-funded activities to "drive the adoption" of its extreme, unnecessary and ruinously costly proposed manufactured housing standards, and simultaneously undermine industry opposition to any such standards. That document, entitled "High Performance Factory Built Housing – 2015 Building Technologies Office Peer Review,"⁴⁴ details a complex DOE strategy to use paid manufactured housing energy "research" activities as a pretext to simultaneously drive and support the adoption of baseless, high-cost DOE manufactured housing energy standards through a process of "integration and collaboration" with the industry's largest businesses and MHI.⁴⁵

Detailing just <u>one</u> DOE "research" contract (or subcontract) with The Levy Partnership, awarded since 2010,⁴⁶ the 2015 report documents nearly <u>\$2 million</u> in actual and projected funds paid by DOE to TLP, to conduct manufactured housing energy "research" on behalf of EERE's Building Technologies Office (BTO)⁴⁷ and to "partner" with "progressive" manufactured housing "plants," "responsible for 80%+ of all new" manufactured homes – <u>i.e.</u>, large manufacturers – in order to:

- "Develop and implement [new DOE energy] codes and standards;"48
- "Participate in the ongoing [DOE] MH standards development process informed by [contract] R&D work."⁴⁹

⁴⁴ See, Attachment 19, hereto. The author of this report, detailing DOE misuse of paid contracts to influence the ASRAC manufactured housing "negotiated rulemaking," acted simultaneously as Vice President of TLP and "Senior Project Coordinator" for SBRA.

⁴⁵ "Project Integration and Collaboration," as detailed in the 2015 report, including a targeted communications strategy within the manufactured housing industry that specifically identified "MHI Meetings," the MHI "Congress and Expo" and the MHI "MH NewsWire" publication as venues and devices for promoting DOE manufactured housing regulation. In apparent execution of this DOE-funded strategy, a presentation at the April 2015 MHI Congress and Expo by - among others - the TLP President/SBRA Executive Director and Robin Roy (NRDC) - touted the supposed benefits of MHWG-based DOE energy regulation for manufactured homes, while simultaneously promoting compliance technologies and methodologies developed by TLP/SBRA and its large manufacturer "partners" under DOE contracts/subcontracts. See, Attachment 20, hereto. Indeed, as recently as a July 27, 2016 email from MHI's Vice President for Regulatory Affairs to manufactured housing industry state association executives and others, MHI once again confirmed the existence and impact of the financial conflict of interest between DOE and TLP/SBRA stating: "MHI has been working with SBRA on a number of cost effective building methods to address the anticipated new standards, including new roof truss designs and building envelope techniques." See, Attachment 21, hereto. The email fails to mention or disclose that these methods and techniques to "address the anticipated new [DOE] standards," were developed by TLP/SBRA under DOE subcontracts, including DOE/NREL subcontract no. KNDJ-0-40347-05 "Field Evaluation of Four Novel Roof Designs for Energy Efficient Manufactured Homes" (December 15, 2015); DOE/NREL subcontract no. KNDJ-0-40347-00 "Expert Meeting Report: Advanced Envelope Research for Factory Built Housing" (April 2012); and DOE/NREL subcontract no. KNDJ-0-40347-04 "Advanced Envelope Research for Factory Built Housing Phase 3 - Whole House Prototyping" (April 2014).

⁴⁶ Coincidentally, 2010 is the same year that the manufactured housing energy rule ANPR was published by DOE.

⁴⁷ See, notes 29 and 30 and related text regarding "insider" coordination with Roland Risser, Director of BTO, to establish the sham MHWG "negotiated rulemaking" process.

⁴⁸ See, Attachment 19, hereto at p.3.

⁴⁹ <u>Id</u>.

- "Dovetail with the [DOE manufactured housing] code update process hand-inglove;"⁵⁰
- "Drive the adoption" of new DOE energy standards, while "SBRA helps facilitate [their] adoption;"⁵¹and
- "Shift" an "industry mindset focused on 1st cost" (<u>i.e.</u>, purchase price of a home to the consumer) -- seen by DOE as a "barrier" to its regulatory objectives -- to a focus on "total ownership costs,"⁵² in order to achieve "market transformation."⁵³

Based on these BTO "objectives," the 2015 report states that <u>paid activity</u> by TLP/SBRA under the contract had already <u>"impacted the ASRAC process</u>" for new manufactured housing energy standards -- referring directly to the sham MHWG "negotiated rulemaking" leading to the June 17, 2016 DOE proposed rule.⁵⁴

Among the various TLP/SBRA contract "partners" in promoting DOE manufactured housing regulation -- listed in the 2015 EERE/BTO report -- are SBRA itself and four members of the SBRA Board of Directors, representing the industry's largest manufacturers.⁵⁵ SBRA's Board, in turn, includes six members of the DOE "negotiated rulemaking" MHWG, <u>all</u> of whom voted to support the excessive, unnecessary and unduly costly standards set forth in the June 17, 2016 DOE proposed rule.

The inherent and material financial conflict of interest created by SBRA and multiple SBRA Board members serving as voting MHWG members, as part of a supposedly arms-length "negotiated rulemaking," at the same time that TLP -- with an interlocking personnel relationship with SBRA -- was a paid DOE subcontractor tasked with: (1) supporting, advancing and promoting DOE manufactured housing energy regulation and regulatory objectives; while (2) conducting research to develop ostensible means and measures to comply with those standards (among other things), again, fundamentally and irretrievably taints this entire rulemaking and violates section 563(a)(3)(B) of the Negotiated Rulemaking Act, requiring the appointment of committee members "willing to negotiate in good faith." Further, DOE's failure to fully disclose this ongoing contractual relationship with TLP/SBRA -- with TLP/SBRA effectively functioning as DOE's paid agent (in cooperation with MHI and the industry's largest manufacturers) to improperly influence an MHWG "negotiated rulemaking" already dominated by DOE-favored "insiders" -has materially prejudiced the rights of MHARR, its members, other manufactured housing industry members and consumers, and other actual and potential opponents of DOE manufactured housing energy regulation, to object to and seek judicial relief from a contrived, manipulated and corrupted standards development process at a meaningful stage of this proceeding.

⁵⁰ <u>Id</u>. at p. 13.

⁵¹ Id. at p. 7

⁵² Id. at p. 4.

⁵³ Id. at p. 10.

⁵⁴ <u>Id</u>. at p. 26. All of this, moreover, is consistent with TLP's self-described role as "providing services to public agencies interested in developing" – <u>i.e.</u>, mandating – "new technologies for housing and <u>accelerating their adoption</u> by industry." <u>See</u>, Attachment 17, <u>supra</u>, at p. 1. (Emphasis added).

⁵⁵ See, Attachment 22, hereto, from the SBRA internet website, listing members of SBRA's Board of Directors.

E. Sham "Consultation" with HUD and the MHCC

Congress, being aware: (1) that EISA section 413 fundamentally conflicts with the purposes, objectives and specific terms of the National Manufactured Housing Construction and Safety Standards Act of 1974, as amended by the Manufactured Housing Improvement Act of 2000; (2) that HUD (and the MHCC), under those laws is required, among other things, to "protect ... the affordability of manufactured homes" and "facilitate the availability of affordable manufactured homes and ... increase homeownership for all Americans; and (3) that the MHCC represents a legitimate, statutorily-balanced consensus forum for the consideration and recommendation of manufactured housing standards and regulations (among other functions) -specifically provided in section 413(a)(2)(B) that DOE manufactured housing energy standards could be established only "after consultation with the Secretary of Housing and Urban Development," who, in turn, was authorized to "seek further counsel from the Manufactured Housing Consensus Committee." (Emphasis added). By the plain wording of this subsection, and for this consultation directive to have any meaning or positive effect, the required consultation would have had to occur during the formulation of the DOE standards - when it could have some conceivable impact – and not after the development and publication of a proposed rule, near the end of the rulemaking process, when it would be a meaningless afterthought.⁵⁶ Indeed, to construe section 413(a)(3)(B) to provide for or permit the required "consultation" after the issuance of the NOPR for this rule -- during and as part of the public comment period, when any member of the public can review and comment of the already-developed proposed rule - would effectively render that section meaningless, contrary to the established cannons of statutory construction.

While DOE claims in its June 17, 2016 NOPR that it "has consulted with HUD,"⁵⁷ it has never disclosed either the content of those alleged "consultations," the parties to the alleged "consultations," or when in the rulemaking process those alleged "consultations" occurred. Meanwhile, at the August 2015 and January 2016 MHCC meetings, the HUD manufactured housing program Administrator refused to disclose any information or documents regarding the occurrence, timing or content of any such "consultations." Accordingly, there is no independent evidence or verification of <u>any</u> such consultations with HUD, their substance, or whether they occurred at a meaningful stage in the development of the June 17, 2016 proposed rule, despite the fact that under EISA section 413, <u>DOE</u> bears the burden of establishing that the required consultations occurred as mandated by Congress. Furthermore, even if – and to the extent that – documents reflecting any such alleged "consultations" might nominally exempt from public disclosure, any such exemption could be waived by DOE and/or HUD, but has not.⁵⁸

⁵⁶ See, e.g., <u>Rural Cellular Association v. Federal Communications Commission</u>, 588 F.3d 1095, 1101 (D.C. Cir. 2009) (opportunity for comment must be a meaningful opportunity). <u>See also</u>, C. Coglianese, "Transparency and Public Participation in the Rulemaking Process," University of Pennsylvania School of Law (July 2008) at p. 6: "By the time that the Notice of Proposed Rulemaking (NPRM) is published and the comment period begins, the agency is highly unlikely to alter its policy significantly. Many internal deliberations and policy discussions occur before an agency issues its NPRM.... If public participation does not affect an agency's actual decision making process because it occurs after rules <u>are already formulated</u>, it is hard to see how it can significantly enhance either the quality or legitimacy of rulemaking." (Emphasis added).

⁵⁷ See, 81 Federal Register, No. 117, <u>supra</u> at pp. 39762-39763.

⁵⁸ <u>See</u>, note 27, <u>supra</u>.

DOE similarly maintains in its June 17, 2016 NOPR that it "attended three MHCC meetings where [it] <u>gathered information from MHCC members</u>." (Emphasis added). MHARR, however, having attended <u>every MHCC</u> meeting since its inception, is aware <u>only</u> of one-sided, summary DOE presentations to the MHCC regarding the manufactured housing rule that DOE has had under development for nine years, and <u>no</u> occasion, whatsoever, where the MHCC, having been provided information on the development and substance of a DOE manufactured housing – in advance – had an opportunity to provide <u>either</u> DOE or HUD with substantive consensus input regarding <u>any</u> aspect of the proposed rule that DOE has now committed-to and published.⁵⁹

Indeed, rather than providing the MHCC with an opportunity to offer <u>independent</u> input on its unduly costly, extreme and unnecessary manufactured housing energy standards at a <u>meaningful</u> point, based on a statutorily-balanced membership and legitimate consensus of manufactured housing program stakeholders, DOE (facilitated by HUD) instead – and as explained above -- chose to "rig" this rulemaking, railroading it through a sham "negotiated rulemaking" conducted through an MHWG dominated and controlled by DOE and its supporters. DOE now touts this phony process and its outcome as a "consensus" result, while it has acted consistently – with the cooperation and assistance of HUD and the HUD manufactured housing program Administrator – to prevent any <u>legitimate</u> consensus consideration and input from the MHCC <u>at a</u> point when it would have mattered.

Indeed, HUD, apparently recognizing its failure to comply with the EISA section 413, on July 25, 2016 – more than four weeks after publication of the June 17, 2016 DOE proposed rule -- published notice in the Federal Register of an August 9, 2016 MHCC telephone conference meeting to "review" a "summary" of the DOE proposed rule and, according to the meeting agenda, consider "Committee recommendations on [the] proposed rule."⁶⁰

Published at the <u>very last minute</u> – in fact, arguably <u>after</u> the last minute allowed by applicable Federal Advisory Committee Act (FACA) regulations requiring published notice "<u>at least</u> 15 calendar days <u>prior</u> to an advisory committee meeting" (emphasis added)⁶¹ -- and scheduled for just days prior to the August 16, 2016 DOE comment deadline, this HUD action appears to be little more than window dressing to whitewash yet another violation of applicable law in a rulemaking process that has been "rigged" from the start. The MHCC, provided an impossibly brief and truncated timeframe to digest a complex, OMB/OIRA-designated "significant rule" (much like the MHWG), will apparently be asked if it wishes to provide comments to DOE that would need to be drafted and approved within less than one week, in order to be submitted prior to the August 16, 2016 public comment deadline. This not only violates the implicit command of section 413 that "consultation" occur at a meaningful time, but is a direct and flagrant insult to the MHCC (and the stakeholders that it represents), offering the Committee a nominal opportunity to "review" a rule that DOE – and HUD – have already committed-to, while

⁵⁹ To the extent, however, that DOE may have solicited or obtained otherwise undisclosed "information," input or comments from any <u>individual</u> MHCC member(s) regarding its manufactured housing energy rule, any such interaction, outside of the MHCC consensus procedures established by the Committee and HUD pursuant to the Manufactured Housing Improvement Act of 2000, would be invalid, illegitimate and not a lawful action of the MHCC. ⁶⁰ See, 81 Federal Register, No. 142 at pp.48442-48443.

⁶¹ The scheduled MHCC meeting date falls <u>on</u> the 15th calendar day after the July 25, 2016 meeting notice publication date. The notice, accordingly, does not provide "<u>at least 15</u>" calendar days' notice "<u>prior</u>" to the meeting, as required.

effectively negating any real impact from that review. Again, though, this cynical manipulation of the rulemaking process is entirely consistent with DOE's pervasive pattern of obfuscation and deception concerning this rulemaking.

F. Procedural Summary

As the foregoing recitation of relevant facts selectively omitted from the DOE June 17, 2016 NOPR demonstrates, the DOE proposed rule -- separate and apart from its fatal substantive defects detailed below – is the product of a fundamentally tainted process that was fatally flawed from its earliest phase and has remained fatally flawed throughout, including, but not limited to:

- The selective, "impermissible" leak of the 2011 DOE "draft proposed" manufactured housing energy rule (DPR) to parties in interest, including the industry's largest manufacturers;
- Failure to disclose the existence or substance of <u>ex parte</u> input from recipients of the selectively leaked 2011 DOE draft proposed rule in either the development and/or modification of the 2011 DOE DPR <u>or</u> the DOE 2016 proposed rule;
- Development of the 2011 DPR without necessary and essential information, leading to the 2013 RFI, surreptitiously seeking such information after-the-fact without disclosing the previous development and existence of the 2011 DOE DPR or its rejection by OMB/OIRA;
- False denial of the selective leak of the 2011 DOE-DPR;
- Refusal to conduct an investigation or otherwise provide relevant details concerning the 2011 DOE-DPR selective leak;
- Failure to disclose responsive documents addressing these matters pursuant to MHARR FOIA requests;
- Failure to disclose the OMB/OIRA start-over directive;
- Failure to disclose <u>ex parte</u> coordination with selective leak recipients regarding the referral of manufactured home energy standards to "negotiated rulemaking;"
- Failure to disclose <u>ex parte</u> coordination with selective leak recipients to establish the parameters of that "negotiated rulemaking;"
- <u>Ex parte</u> coordination with selective leak recipients to establish an inadequate and unnecessarily truncated time-frame, schedule and deadline for the completion of that "negotiated rulemaking;"
- <u>Ex parte</u> coordination with selective leak recipients to establish a "negotiated rulemaking" MHWG dominated and controlled by "insider" selective leak recipients;
- Non-transparent and unverified data inputs to the MHWG on crucial rulemaking issues, including cost-benefit;
- Undisclosed MHWG conflicts of interest precluding "good faith" negotiation as required by applicable law;
- DOE manipulation of alleged "research" contracts to steer funds to one or more "insiders" (and MHWG members) to influence the "negotiated rulemaking" process;
- Refusal to disclose the 2011 DOE DPR for comparison to the 2016 DOE proposed rule;

- Refusal to disclose the 2011 DOE "draft" NOPR, TSD and cost-benefit analysis for comparison to the corresponding 2016 DOE rulemaking documents;
- Failure to provide evidence of "consultation" with HUD as required by EISA section 413, the time of that consultation (if any), the substance of any input received from HUD (if any), and any changes made to the June 17, 2016 proposed rule or NOPR as a result; and
- Failure to consult with the MHCC in a timely and legitimate manner as provided by EISA section 413.

In its entirety, this sham process has seriously prejudiced both the procedural and substantive rights of MHARR, its members and other affected stakeholders that were not party to – or part of – a consistent pattern of coordinated activity to benefit certain favored "insiders" at the expense of consumers, smaller industry businesses and other non-"insider" stakeholders. Those specific actions by DOE (and HUD) produced a phony "negotiated rulemaking" process, a phony MHWG, a phony alleged MHWG "consensus" and, ultimately, an illegitimate MHWG Term Sheet and illegitimate proposed rule. For these reasons alone, the DOE proposed rule should either be withdrawn, or – if implemented by DOE as a final rule – vacated upon judicial review. As is demonstrated below, however, the June 17, 2016 DOE proposed rule – beyond this fundamentally corrupted procedure -- is unsupported by factual cost-benefit data as required by EISA section 413 and is otherwise an agency action that is "arbitrary, capricious, or an abuse of discretion" in violation of the Administrative Procedure Act.

III. <u>COMMENTS</u>

The manufactured housing energy standards proposed by DOE in this rulemaking are an appalling and indefensible exercise in federal government overreach and destructive, excessively costly regulatory intervention in the free market to the ultimate and profound detriment of the very consumers that the government -- and particularly the current Administration -- putatively seek to "protect." Even though manufactured homes – after reaching historic-low production levels in 2009 – represent only 7.4% of all housing placements⁶² and only 5.9% of all occupied housing units, ⁶³ DOE seeks to impose harsh, needless, <u>discriminatory</u>, excessive and unreasonably costly standards on the nation's most affordable housing and the mostly lower and moderate-income Americans who rely on that affordability to be homeowners instead of renters, government subsidized renters, or homeless altogether. These standards, if adopted, would <u>far</u> exceed in cost and substantive mandates, <u>any</u> requirements currently imposed on the more than 90% of other types of homes in the housing market, including even multi-million dollar site-built homes with far more affluent owners.⁶⁴ Instead of allowing consumers to exercise free-choice within a free-market, where HUD Code manufacturers already offer consumers an energy-efficient home and a wide range of enhanced energy features as purchase options, the proposed DOE rule would instead

⁵² <u>See</u>, "Manufactured Homes: A Shrinking Source of Low Cost Housing," Fannie Mae Economic and Strategic Research (June 27, 2013). Reflecting 2012 data, down from 20.2% in 1998.

⁶³ <u>Id</u>. Reflecting 2011 data, down from 7.0% in 2000.

⁶⁴ As of May 2016, the International Code Council (ICC) reported that only <u>six</u> states had adopted the 2015 IECC – the basis for DOE's June 17, 2016 proposed standard. <u>See</u>, Attachment 23 hereto, "International Codes-Adoption by State," International Code Council (ICC) (May 2016).

<u>force</u> consumers to pay for energy features that they cannot afford or would not otherwise want through a one-size-fits-all big government mandate. To impose what is $-\underline{at best} - \underline{a}$ regressive, <u>de</u> <u>facto</u> tax on American families already struggling to be and become homeowners, while excluding millions of others from the benefits of homeownership entirely, in order to advance an unrelated, controversial and unproven agenda, constitutes an abuse of power and an abuse of the public trust.

A. HUD-Regulated Manufactured Homes are Already Energy-Efficient In a Manner Consistent with Law and Genuine Affordability

While totally ignored amidst the nearly-impenetrable jargon and disputed junk science that are the hallmark of DOE's June 17, 2016 NOPR, the fact is that HUD-regulated manufactured homes, as a result of the national housing policies and regulatory system established by the National Manufactured Housing Construction and Safety Standards Act of 1974, as amended by the Manufactured Housing Improvement Act of 2000, are <u>already</u> energy efficient -- in a manner consistent with the over-riding purposes and objectives of those laws.

Unlike the "consumer products" (e.g., home appliances) that DOE regulates under the Energy Policy and Conservation Act of 1975 (42 U.S.C. 6291, et seq.),⁶⁵ manufactured housing – as a product and as an industry -- is <u>unique</u>, as recognized by Congress and as enshrined in federal law long before the adoption of EISA in 2007. As the nation's most affordable source of non-subsidized housing and homeownership -- as determined by HUD⁶⁶ and established by U.S. Census Bureau data⁶⁷-- manufactured homes play a vital role in the American housing market and in American society, providing homeownership opportunities (and all of the attendant benefits of homeownership) for Americans, and particularly lower and moderate-income American families, that might not otherwise be able to afford a home of their own.

As a result, Congress made the continuing (purchase price) affordability of HUD-regulated manufactured homes a <u>central objective</u> of the National Manufactured Housing Construction and Safety Standards Act of 1974. Indeed, the purchase price affordability of manufactured homes is crucial to ensuring that <u>the largest number of Americans possible</u> – at <u>every</u> rung of the economic ladder -- can access and enjoy home ownership and all of its benefits. Congress, moreover, <u>reaffirmed</u> and <u>expanded</u> the law's emphasis on affordability when it amended the 1974 Act with the Manufactured Housing Improvement Act of 2000. The law as amended, therefore, addresses the need to preserve the inherent (purchase price) affordability of manufactured homes in at least four of its eight express "purposes," <u>i.e.</u>: "(1) to protect the quality, durability, safety and

⁶⁵ <u>See, e.g.</u>, DOE proposed rules for "residential conventional ovens," published at 80 Federal Register, No. 111 (June 10, 2015) at p. 33030, <u>et seq</u>.

⁶⁶ <u>See</u>, U.S. Department of Housing and Urban Development, "Is Manufactured Housing a Good Alternative for Low-Income Families? Evidence from the American Housing Survey" (December 2004). This HUD-sponsored study determined that, over an eight-year sample period, the mean monthly housing cost of consumer-owned manufactured homes was consistently and substantially less than the cost of ownership for other types of homes or even the cost of renting a home.

⁶⁷ <u>See</u>, U.S. Census Bureau, "Cost and Size Comparison: New Manufactured Homes and Single-Family Site Built Homes (2007-2014)," showing an <u>average</u> structural price of \$65,300 (\$45.41 per square foot) for HUD-regulated manufactured homes as compared with an average structural cost (<u>i.e.</u>, excluding land) of \$261,172 (\$97.10 per square foot) for a site-built home.

affordability of manufactured homes; (2) to facilitate the availability of affordable manufactured homes and to increase homeownership for all Americans; *** (4) to encourage innovative and cost-effective construction techniques for manufactured homes; *** and (8) to ensure that the public interest in, and need for, affordable manufactured housing is duly considered in all determinations relating to the federal standards and their enforcement." (See, 42 U.S.C. 5401(b)). In addition, the Act requires that HUD (and the MHCC) "in establishing standards or regulations, or issuing interpretations" under the Act, "consider the probable effect of [that] standard on the cost of the manufactured home to the public...." (See, 42 U.S.C. 5403(e)(4)).

Thanks to this specific national housing policy that recognizes and seeks to preserve the purchase-price affordability of HUD Code manufactured homes, manufactured homes in 2011, according to U.S. Census Bureau data, accounted for 71% of all new homes sold for under \$125,000, 50% of all new homes sold for under \$150,000 and 30% of all new homes sold for under \$200,000.

Manufactured homes, moreover, were <u>already</u> subject to HUD Code energy efficiency standards when EISA was enacted. Under those standards⁶⁸developed and promulgated in accordance with the strict balance of consumer protection and purchase-price affordability mandated by the 1974 Act as amended, HUD Code homes were – and are⁶⁹ – required to meet criteria governing condensation control, air infiltration, thermal insulation, heat loss and heat gain and related certifications for heating and "comfort cooling." The HUD standards – in accordance with the fundamental policy of the 1974 Act, as amended, to "establish," to "the maximum extent possible ... performance requirements,"⁷⁰is designed to achieve certain specified Uo (coefficient of heat transmission) values within three defined geographical zones across the United States.

As a consequence of those pre-existing HUD energy standards, manufactured homes, as established by U.S. Census Bureau data, are <u>already</u> energy efficient, without regressive, high-cost DOE "energy" mandates. Specifically, data from the 2013 American Housing Survey shows that the median monthly housing cost for fuel oil was \$92.00 for manufactured homes as compared to \$267.00 for other types of housing. The median monthly cost for piped natural gas was \$34.00 for manufactured homes as compared to \$38.00 for other types of housing, and the median monthly cost for electricity was only slightly higher for manufactured homes (at \$119.00) than other types of homes (at \$105.00)⁷¹ -- a difference of only \$168.00 per year.

⁶⁸ See, 24 C.F.R. 3280.501, et seq.

⁶⁹ Nothing in EISA section 413, or in EISA generally, would automatically invalidate or negate the existing HUD energy conservation standards upon the promulgation of any final DOE energy rule. Indeed, EISA section 3, "Relationship to Other Law," states: "Except to the extent <u>expressly provided</u> in this Act or an amendment made by this Act, nothing in this Act supersedes, limits the authority provided or responsibility conferred by, or authorizes any violation of any provision of law (including a regulation)...." (Emphasis added). Accordingly, as DOE concedes, any conflict between existing HUD energy standards and any final DOE standard would leave producers subject to potential enforcement activity by HUD, DOE, or both.

 $^{^{70}}$ See, 24 C.F.R. 3280.1 – "This standard seeks to the maximum extent possible to establish performance requirements." It is this performance-based nature of the HUD standards, together with their uniform application and enforcement, and effective federal preemption that ensure the fundamental (and unequalled) affordability of HUD Code manufactured homes.

⁷¹ See, Attachment 24 hereto, U.S. Census Bureau, 2013 American Housing Survey, Table C-10AO (National), Housing Costs – All Occupied Units, at p.2.

Because of its broader, inherent and more consistent affordability, however, over a <u>complete</u> range of operating metrics, this <u>minor</u> additional energy cost for electricity is more than subsumed within the expansive operating efficiencies of HUD Code manufactured homes. Thus, U.S. Census Bureau data shows that the median <u>total</u> monthly operating cost for a current-day HUD Code manufactured home is \$501.00 per month, as contrasted with \$1,322.00 for other new residential structures -- a <u>164</u>% cost advantage for manufactured home owners under the <u>current</u> HUD standards.⁷² Moreover, manufactured housing producers <u>already</u> provide a wide range of enhanced energy packages (including EnergyStar packages), tailored to the specific needs and wants of consumers, on an optional basis. Thus, manufactured homebuyers currently have the freedom to choose whatever type of energy package they wish to purchase and have the financial ability to purchase, while those who wish to spend their money in other ways – or not at all – are free to do so. All this would change, however, under the regressive DOE standards, which would force those remaining in the market to spend money for energy features – without proven returns⁷³ – that they otherwise would not purchase.

These indisputable facts, in conjunction with established law, have three major inter-related consequences for this rulemaking.⁷⁴ First, the cost-benefit language of EISA section 413, requiring that DOE manufactured housing standards be based on the most recent version of the International Energy Conservation Code, "except in cases in which the Secretary finds that the code (sic) is <u>not cost-effective</u>" (emphasis added), <u>must</u> be construed and applied consistently with the purposes, objectives and mandates of existing law – in this case, the 1974 Act as amended by the 2000 reform law.⁷⁵ Therefore, the "cost-effective" proviso of EISA section 413 must be construed and applied -- consistently with the 1974 Act, as amended -- to ensure that <u>non-life-safety</u> energy standards do <u>not</u> result in purchase price increases to manufactured homes that would significantly impair their affordability, availability and accessibility to <u>all</u> Americans, or otherwise decrease homeownership. (See, 42 U.S.C. 5401).

Second – and consistent with Black Letter cannons of statutory construction requiring that statutes be construed consistently to give meaning to all of their provisions -- the cost-benefit analysis required by EISA section 413 is an integral, <u>substantive</u> element of that law. Consequently, a <u>valid</u>, <u>credible and legitimate</u> cost-benefit analysis is a necessary predicate to the proposal and adoption of <u>any</u> standard under EISA section 413. Third – and consistent with all of the foregoing – that cost benefit analysis must definitively establish that the proposed standards do not violate section 413 (construed in accordance with the 1974 Act, as amended), by significantly impairing the purchase price affordability, availability and accessibility of manufactured homes "for all Americans." (See, 42 U.S.C. 5401(b)(2)).

·`

⁷² <u>Id</u>. at p. 1.

⁷³ See, Section III C, pp. 26-33, infra, regarding DOE's wholly-deficient cost-benefit "analysis."

⁷⁴ This data demonstrates, moreover, that EISA section 413 proceeds from a fundamentally false premise and assumption, rooted in decades of official federal government discrimination against HUD-regulated manufactured housing - <u>i.e.</u>, that manufactured homes are somehow "deficient" and in need of "improvement." Indeed, the "improvement" of manufactured housing was an initial statutory objective and purpose of the original 1974 federal manufactured housing Act, but was <u>repealed</u> by Congress through the 2000 reform law, in recognition of the equality of HUD-regulated manufactured with all other types of housing for all purposes.

⁷⁵ <u>See e.g.</u>, "Statutory Interpretation, General Principles and Recent Trends," Congressional Research Service, (December 19, 2011) at p. 29. A court "must read two statutes to give effect to each if it can do so." Citing <u>Watt v.</u> <u>Alaska</u>, 451 U.S. 259 (1981).

As is demonstrated below, however, the cost-benefit analysis offered by DOE in its June 17, 2016 NOPR and related "Technical Support Document" (TSD), is wholly and fatally deficient, and cannot – and does not – support the adoption of the proposed June 17, 2016 DOE standards or their compliance with the "cost-effective" directive of EISA section 413. Insofar as <u>DOE</u> has the "<u>affirmative burden</u> of promulgating and explaining a non-arbitrary, non-capricious rule," <u>see, e.g., Small Refiner Lead Phase-Down Task Force v. U.S. Environmental Protection Agency</u>, 705 F.2d 506, 534-535 (D.C. Cir. 1983), its failure to properly consider all applicable and relevant aspects of the cost-benefit impact of the June 17, 2016 proposed rule necessarily means that the proposed rule fails to meet the applicable legal standards and cannot go forward.

B. The Proposed Standards will Exclude Millions of Americans From Manufactured Housing and Home Ownership Entirely

DOE maintains in the June 17, 2016 NOPR that its proposed standards would add up to \$2,422 to the retail price of a single-section manufactured home (with a national average of \$2,226) and up to \$3,748 to the cost of a new multi-section manufactured home (with a national average of \$3,109) – for non-"life-safety" energy measures that are already available to homebuyers who want them as optional features.⁷⁶ These figures – as acknowledged by DOE⁷⁷ -- are <u>based upon</u> the non-transparent purchase price impact information provided to the "negotiated rulemaking" MHWG by SBRA and MHI.

Even if it were assumed that these amounts reflected the full and true final cost of the DOE proposed rule to consumers – which they do not -- they would have a disastrous impact on the affordability, availability and accessibility of manufactured housing for American families already facing unprecedented difficulty in obtaining consumer financing to purchase a manufactured home. According to a 2014 study by the National Association of Home Builders (NAHB), presented to the MHWG at its initial meeting (the <u>only</u> independent market-impact information or testimony presented to the MHWG as part of DOE's supposed "negotiated rulemaking"), a \$1,000.00 increase in the purchase price of a new manufactured home excludes 347,901 households from the market for a single-section home, while the same \$1,000.00 increase excludes 315,385 households from the market for a double-section home.⁷⁸ Extrapolating this data to the price increases projected by the NOPR shows that the pending DOE standards would exclude more than 1.1 million households from the double/multi-section market – extreme numbers considering that the entire industry, since 2006 has been producing fewer than 100,000 new homes a year.

Given the established status of manufactured homes as the nation's most affordable type of housing and homeownership, the exclusion of millions of Americans from the manufactured housing market would effectively mean the exclusion of millions of Americans from

⁷⁶ <u>See</u>, 81 Federal Register, No. 117, <u>supra</u> at p. 39757.

⁷⁷ Id. at p. 39783: "These costs are based on estimates for the increased costs associated with more energy efficient components, as provided by the MH working group." The NOPR, moreover, provides no indication that DOE either developed or sought to develop its own independent cost information to compare with these critical unverified, unvetted and totally non-transparent cost inputs. See, discussion in section II D, supra, at pp. 15-16.

⁷⁸ See, public testimony of Donald Surrena, Program Manager, Energy Efficiency, NAHB.

homeownership altogether, in violation of the 1974 Act, as amended, and contrary to national housing policy to encourage and support homeownership.⁷⁹

Significantly, though, the cost-benefit "analysis" presented in both the June 17, 2016 NOPR and TSD fails to reflect the full and true cost of the proposed rule. This means that the resulting exclusion of homebuyers from the manufactured housing market will be even greater than the figures extrapolated above and that the numbers of Americans excluded from homeownership <u>altogether</u> will be greater, yielding major individual and societal costs that are not reflected at all in the DOE cost-benefit "analysis." These and other material flaws in the cost-benefit "analysis, as detailed below, make it so deficient as to be <u>worthless</u> for regulatory purposes.

C. DOE's Cost-Benefit "Analysis" is Necessarily Incomplete and Fails to Reflect the True or Complete Costs of the Proposed Rule

DOE's cost-benefit analysis for the June 17, 2016 proposed rule – a necessary and essential predicate for any proposed rule pursuant to EISA section 413, as demonstrated above – is fundamentally incomplete, arbitrary and fatally deficient, in that it does not include or otherwise fails to quantify and/or consider key cost impacts of the proposed standards.⁸⁰ This failure to adduce or properly consider all applicable cost elements and impacts of the proposed standards results in cost-benefit and "life-cycle cost" calculations that are factually baseless and therefore, "arbitrary and capricious" per se, in violation of EISA section 413 and the Administrative Procedure Act. (See, 5 U.S.C. 706).⁸¹

⁷⁹ This regulatory-driven exclusion of millions of lower and moderate-income consumers from the housing market, moreover, would take place in the context of homeownership rates that have already fallen to their lowest levels in more than 50 years. <u>See, e.g.</u>, Attachment 25, hereto, "Homeownership Rate in the U.S. Drops to Lowest Since 1965," Bloomberg News (July 28, 2016). Declining homeownership has particularly impacted minority communities according to a 2015 study by the Harvard University Joint Center for Housing Studies ("State of the Nation's Housing") noting that "African Americans [now] have the lowest rate of homeownership [at] 43.8%"

⁸⁰ Such defective cost-benefit analyses, moreover, are hardly unprecedented for DOE. In written comments filed on April 3, 2015, in connection with a DOE rulemaking to establish "Energy Conservation Standards for Hearth Products," the Mercatus Center of The George Mason University condemned DOE's supposed cost-benefit "analysis" for failing to include and consider significant cost factors. Among other things, the Center noted that DOE did "not measure the welfare loss from shutting down small businesses and the negative impact on a portion of the population working in this area who this regulation affects. *** This results in additional losses that DOE does not take into account. *** It seems the losers in this regulation lose more than the winners gain, meaning that there is a loss in social welfare that the net standard benefit calculation provided by DOE fails to take into account." The same type of serious, significant and highly relevant analytical defects characterize the supposed cost-benefit "analysis" in this rulemaking as well.

⁸¹ <u>See, e.g.</u>, <u>Soler v. G&U, Inc.</u>, 833 F.2d 1104 (2d Cir. 1987) (Successful challenge to an agency's decision under the arbitrary and capricious standard must clearly demonstrate that the agency "relied on factors which Congress did not intend it to consider, <u>entirely failed to consider an important aspect of the problem</u> [or] offered an explanation for its decision that runs counter to the evidence before the agency....") (Emphasis added).

1. DOE's Cost-Benefit "Analysis" is Fatally Defective in that it Fails To Quantify or Consider Testing, Enforcement and Regulatory Costs

DOE's June 17, 2016 NOPR states, in part: "DOE estimates that benefits to manufactured homeowners in terms of lifecycle cost (LCC) savings and energy cost savings under the proposed rule would outweigh the potential increase in purchase price for manufactured homes."82 This claim, however, is necessarily false and the findings of DOE's lifecycle cost analysis are necessarily flawed, skewed and materially inaccurate, in that they do not reflect, consider or account for key cost information. As a result, the claimed benefits of the proposed rule are netted against incomplete and/or inaccurate cost data, thereby yielding alleged "payback" amounts and timeframes that are distorted and biased in favor of the proposed rule. This distortion includes several aspects, which are addressed in this and subsequent sections, below.

Most significantly, the DOE cost-benefit analysis fails to include or consider significant additional costs that will be incurred by manufacturers - and inevitably passed to consumers in the purchase price of new manufactured homes – for: (1) testing, certification, inspections and other related activities to ensure compliance with any new DOE standards (including new testing requirements not currently included in the HUD Code that could be particularly costly and onerous); (2) enforcement compliance and activity; and (3) ongoing regulatory compliance. Although such expenses are - and are recognized as -- an integral component of the ultimate consumer-level cost of any mandatory rule, they are totally excluded from DOE's cost-benefit and LCC analyses in this rulemaking. Those analyses, as a result, are skewed toward greater alleged benefits from the proposed rule and shorter consumer LCC "payback" times than would be the case if all applicable costs were included and considered. Indeed, as it stands now, under DOE's fundamentally flawed and incomplete LCC analysis, the projected consumer "payback" period i.e. 7.1 years for a single-section home and 6.9 years for a multi-section home -- is already longer than many consumers will live in a new manufactured home. The addition of testing, enforcement and regulatory compliance costs (and other additional un-captured costs set forth below), would extend that payback period even longer, meaning that even fewer homebuyers will ever recapture purchase price increases attributable to the proposed rule.83

This deceitful bifurcation of direct standards-generated costs on the one hand and testing, enforcement and regulatory compliance costs on the other - notwithstanding the fact that <u>all</u> such costs, as well as additional costs for compliance with existing HUD Procedural and Enforcement Regulations.⁸⁴ will represent additional consumer-level costs under any final DOE rule - began

 ⁸² See, 81 Federal Register, No. 117, supra at p. 39757.
 ⁸³ See, "2012 Mobile Home Market Facts," Foremost Insurance Group, at p. 8, showing that <u>39</u>% of survey respondents had purchased their manufactured home within the past six years (i.e., 2006-2012). See also, "Is Manufactured Housing a Good Alternative for Low Income Families?" U.S. Department of Housing and Urban Development (December 2004), at p. 44 (55.4% of manufactured home residents moved within 10-year study period, with a mean duration of 2.57 years).

⁸⁴ See, 24 C.F.R. 3282.1, et seq. describing HUD's manufactured housing inspection, monitoring and enforcement program. Regardless of whether energy standards developed by DOE pursuant to EISA section 413 are enforced by DOE or HUD, or some combination of both, the changes to HUD-regulated homes that will be required by the proposed DOE standards will result in separate and additional compliance costs under the Part 3282 regulations. These inevitable additional costs will include, but will not be limited to, costs for the re-design of homes; costs for the approval and certification of such new or modified designs; costs for new or additional materials needed to support

with the sham MHWG "negotiated rulemaking" process, where DOE, via its "Designated Federal Official," barred discussion or consideration of any aspect of enforcement or regulatory compliance, or their associated costs. The absurd and misleading bifurcation is continued in the June 17, 2016 DOE NOPR, which states: "DOE is not considering compliance and enforcement in this proposed rule.... As a result, the costs ... resulting from any compliance and enforcement mechanism <u>are not included in the economic impact analysis that is included in this rulemaking</u>."⁸⁵This represents an admission by DOE that its cost-benefit analysis and LCC "calculations" are necessarily inaccurate, incomplete and not reflective of the true and complete costs of the proposed rule.

DOE's consumer-level cost-benefit analysis, therefore, compares "apples to oranges," netting out <u>all</u> conceivable "savings" against only <u>part</u> of the costs that will be added to the price of the home. As a result, there is no basis, <u>whatsoever</u>, for DOE to conclude – in connection with <u>this</u> rule -- that consumer benefits exceed costs, because the full costs of the proposed standards are not known and <u>cannot</u> be known until DOE, at a minimum, settles on a compliance and enforcement system, which – it admits – has not occurred. Nor can a cost-recovery <u>period</u> be accurately calculated because costs -- again – are not known and not fully quantified as of now, and cannot even be accurately estimated with so many unknowns. Indeed, the attempt to pass this off as any kind of legitimate cost-benefit analysis is itself disingenuous. Therefore, DOE's analyses are neither credible nor legitimate and, <u>per se</u>, cannot be – and are not – sufficient to satisfy the substantive cost-benefit directive of EISA section 413 or the "arbitrary, capricious or abuse of discretion" standard of the APA.

2. DOE's Cost-Benefit "Analysis" is Fatally Defective In that it Fails To Quantify or Consider the Cost of Exclusion From Homeownership As a Result of the Rule

In addition to its fatal failure to address or consider testing, enforcement and regulatory compliance cost-impacts at the consumer level, DOE's cost-benefit and LCC analyses are necessarily incomplete, defective and insufficient to meet the requirements of either EISA section 413 or the APA because they totally fail to consider the individual (and societal) cost impacts that will result from the exclusion of millions of Americans from attaining homeownership. This fundamental omission – while evident from the June 17, 2016 NOPR and related TSD – was confirmed by DOE (and its cost-benefit analysis contractor) at the July 13, 2016 DOE public meeting concerning the instant rulemaking.

Using DOE's own fundamentally understated consumer-level cost figures, the 2014 NAHB cost study, cited above, indicates that June 17, 2016 DOE proposed standard would result in the exclusion of more than 1.1 million households from the single-section manufactured housing

the inclusion of energy efficiency measures required by the proposed rule; and costs related to the certification and approval of such materials, among others. Nor does DOE's analysis consider the cost impact of compliance with HUD's lifetime home recall provisions – Part 3282, Subpart I -- which would be significant, if HUD adopts the DOE standards as part of the HUD Code.

⁸⁵ See, 81 Federal Register, No. 117, <u>supra</u> at p. 39783.

market and just over 1 <u>million</u> households from the double/multi-section market⁸⁶ and, with that, exclusion from homeownership entirely. This market and homeownership exclusion, moreover, as a direct consequence of the non-life-safety DOE standards, would most severely and harshly impact lower-income purchasers, who comprise the vast majority of current manufactured home purchasers.⁸⁷

For the millions of Americans who would be excluded from homeownership as a direct consequence of the significantly higher manufactured home purchase prices that will be driven by the proposed rule – if adopted – the DOE rule will have <u>no</u> consumer-level benefits. For those consumers, the rule will have only costs.⁸⁸ While those costs, axiomatically, will not be the specific "costs" of the rule itself – insofar as they will be excluded from the market – those consumers will nevertheless incur costs as a result of the rule, <u>i.e.</u>, the cost of exclusion from homeownership and, in some cases, the cost of homelessness. The consumer-level DOE costbenefit analysis, however, fails to quantify or account for these costs. Not are these costs reflected in DOE's "national" cost-benefit analysis.

By failing to reflect the impact of the proposed rule on <u>millions</u> of American consumers who would be excluded from the manufactured housing market and homeownership entirely – for whom there would be no "benefits," only "costs," the consumer and national-level DOE costbenefit analyses are materially skewed, biased and not reflective of the full and true cost of the proposed rule.

Nor can DOE legitimately claim that consumer and national-level costs resulting from homeownership exclusion under the proposed rule are somehow difficult or "impossible" to quantify. If DOE can claim "benefits" for the proposed rule resulting from allegedly reduced carbon emissions, quantified via its "social cost of carbon methodology"⁸⁹ -- a global⁹⁰ calculation (in violation of OMB Circular A-4, Regulatory Analysis") based on Integrated Assessment Models

⁸⁶ Using the higher cost figures derived by MHARR -- reflecting additional costs over and above costs for a current base-level HUD Code home (see, Attachment 8, supra) -- the number of households excluded from the manufactured housing market – and homeownership – approaches nearly 2 million (i.e., 1.6 million excluded from the single-section market and 1.83 million excluded from the double-section market). These exclusions, with the addition of other costs not captured by DOE's cost-benefit analysis, would easily exceed 2 million.

⁸⁷ According to U.S. Census Bureau data, the median household income for all occupied manufactured homes is \$28,400. See, U.S. Census Bureau, 2013 American Housing Survey, Table C-09-AO (National), Income Characteristics – All Occupied Units, at p.1. See also, "2012 Mobile Home Market Facts," Foremost Insurance Group, at p. 2, 5 ("55% of [manufactured] home owners reported an annual household income [of] less than \$30,000, representing a <u>16% increase from 2008</u>"). Household income for manufactured housing residents, accordingly, is <u>declining</u>. This income level is only slightly higher than the current federal poverty level – <u>i.e.</u>, \$24, 250 – for a family of four. As a result, purchase price increases driven by the unnecessary energy efficiency measures of the DOE proposed rule will have a devastating impact on the lower and moderate-income consumers who rely on manufactured housing the most. It should also be noted that market exclusion resulting from the DOE rule would not only impact "homeownership," <u>per se</u>. Significant increases in the purchase price of manufactured homes acquired by manufactured housing communities for rent to lessees would also be passed through to occupants in the form of higher rent payments. Those higher rental payments, in turn, would result in the exclusion of additional households from the manufactured housing market.

⁸⁸ Put differently, for consumers excluded from manufactured home ownership by purchase prices driven to levels they simply cannot afford, there is no "life-cycle" – and therefore no possibility whatsoever of "life-cycle savings." ⁸⁹ See, 81 Federal Register, No. 117, <u>supra</u> at p. 39791.

⁹⁰ See, detailed discussion at section III C 5, pp. 32-33, infra,

incorporating "crucial flaws that make them close to useless as tools for policy analysis,"⁹¹then there is no reason that DOE cannot quantify and properly consider the costs of market exclusion and homelessness resulting from its proposed rule that will significantly increase the cost of the nation's most affordable housing. It could begin that analysis with the assertion of former HUD Secretary Shaun Donovan, that it costs taxpayers \$40,000 per year for each homeless person in the United States.⁹²

The proposed rule, accordingly, is, in reality, a \underline{tax} -- a regressive, discriminatory tax on America's manufactured housing consumers that will fall the hardest on those at the lower end of the economic spectrum who rely on the affordability of manufactured housing the most, while forcing those remaining in the market to spend thousands of dollars for energy conservation features they would not otherwise purchase in a free market, as shown by decades of industry experience with optional enhanced energy packages.

3. DOE's Cost-Benefit "Analysis" is Fatally Defective in that it Fails To Quantify or Consider Larger Cost Impacts on Smaller Producers

The non-transparent "cost" figures provided to the MHWG by MHI/SBRA – upon which the MHWG "Term Sheet," the proposed rule and the DOE cost-benefit analysis are premised – undoubtedly were obtained primarily from larger manufacturers that MHI represents and that participated in the MHWG.⁹³ Based on calculations derived by MHARR, however, those figures significantly understate the cost of the proposed rule based on the supply costs paid by smaller independent manufacturers which still represent approximately 30% of the total domestic manufactured housing market.⁹⁴

Based on those higher supply costs, MHARR calculations reflect price increases of up to \$4,600.00 above current HUD Code performance standards for a single-section manufactured home and up to \$5,825.00 for a double-section home.⁹⁵ These calculations were provided to DOE by MHARR in March 2015, but have not been included or otherwise addressed or accounted-for in the June 17, 2016 NOPR cost-benefit analysis.

Insofar as these higher supply costs, which will impact a significant portion of the manufactured housing market are not subsumed or reflected in the DOE cost-benefit analysis, that analysis, again: (1) is based on non-transparent, un-vetted crucial information inputs; (2) significantly understates costs attributable to the proposed rule; and (3) is wholly insufficient and inadequate to meet the substantive cost-benefit mandate of EISA section 413 and the "arbitrary, capricious, or abuse of discretion standard of the APA.

⁹¹ <u>See</u>, "Obama's Climate Action Plan Means Higher Electricity Prices for Business, Consumers," Washington Examiner (January 16, 2014) quoting Professor Robert Pindyck, Massachusetts Institute of Technology.

⁹² See, "HUD Secretary Says a Homeless Person Costs Taxpayers \$40,000 a Year," PolitiFact (March 12, 2012).

⁹³ This again demonstrates the material prejudice to MHARR and other stakeholders resulting from the sham DOE "negotiated rulemaking" process.

⁹⁴ See, note 107, infra.

⁹⁵ See, Attachment 18, hereto, supra

4. DOE's Cost-Benefit "Analysis" is Fatally Defective in that it Fails <u>To Quantify or Consider the Cost Impact of Regular IECC Changes</u>

Further, by requiring DOE to <u>constantly</u> update manufactured housing standards to keep pace with the "latest version" of the IECC – which is revised every two years <u>without regard to</u> <u>cost-benefit</u>, unlike the HUD Code standards -- EISA not only discriminates against manufactured homebuyers vis-à-vis other types of homes regulated under earlier, less stringent and less costly versions of the IECC,⁹⁶ but adds an element of ongoing regulatory uncertainty that will further increase manufacturer compliance costs and the cost of manufactured homes to potential consumers that are not captured within DOE's NOPR cost-benefit analysis.

The significant negative impact of ongoing regulatory uncertainty within regulated industries – and, in particular, on regulated industry participants, such as manufactured housing producers – has been addressed extensively by economists, with studies showing that regulatory uncertainty has a pronounced negative impact on investment, growth, and competitiveness, resulting in both consumer, industry and national-level costs that are not addressed, considered or reflected in DOE's cost-benefit analysis.⁹⁷

These negative impacts, that are not addressed, considered, or accounted-for in the June 17, 2016 NOPR cost-benefit analysis, will not only increase the cost of manufactured housing beyond the amounts projected in the NOPR – thereby extending already lengthy LCC cost-payback timeframes that already exceed the period that significant numbers of manufactured homeowners will remain in their homes – they will also: (1) increase the numbers of lower and moderate-income Americans excluded from the manufactured housing market and homeownership altogether; and (2) reduce the availability of affordable manufactured housing, contrary to the mandate, purposes and objectives of existing federal manufactured housing law.

⁹⁵ <u>See</u>, Attachment 23, <u>supra</u>. Two states have adopted the 2006 IECC on a statewide, unmodified basis, sixteen have adopted the unmodified 2009 IECC statewide, eleven have adopted the 2012 IECC, and just six have adopted the 2015 IECC on an unmodified statewide basis. Two states have not adopted <u>any</u> version of the IECC. The largest number of states that have adopted the IECC, therefore, are still enforcing codes dating back at least <u>seven years</u>.

⁹⁷ See, e.g., "The Impact of Regulation on Investment and the U.S. Economy," The Mercatus Center, The George Mason University, at pp. 3-4. ("I]nvestment may be temporarily withheld when there is uncertainty about the size and scope of new regulatory initiatives. This is particularly true for investments that cannot be easily reversed -- i.e., reselling capital for its purchase price. Investment in new capital is inevitably accompanied by the hiring of new labor. For firms that must rely on a constant source of financial capital -- i.e., smaller firms, one current source of uncertainty is how the new financial rules will affect their abilities to borrow. About 1/3 of small firms rely on regular borrowing to finance capital. *** Two types of uncertainty can affect decisions by firms to invest: (a) uncertainty about demand for their products demand uncertainty and (b) uncertainty about factor costs -- labor and capital -- [i.e.,] factor uncertainty. Major regulations—such as those recently authorized regarding financial services, health care, or greenhouse gas rules—can affect both demand and factor uncertainty. *** [O]ne key type of factor uncertainty is whether firms will have access to credit in the future. Uncertainty about access to credit has a greater impact on firms, small firms in particular, that need continuous access to credit in order to finance investments.")

5. DOE's Cost-Benefit "Analysis" is Fatally Defective in that Nets Global "Benefits" Against only Partial Domestic "Costs"

DOE's claim, moreover, that the proposed standards would result in "a net benefit to the nation as a whole,"⁹⁸ is riddled with even more gaping analytical flaws. DOE cites "environmental benefits" flowing from its proposed rule as a result of "reduced emissions of air pollutants and greenhouse gasses associated with electricity production."⁹⁹ As with all of DOE's "climate change" rules, however, that claim relies on a non-transparent pseudo-science/economic "model" developed behind closed doors by a federal "Interagency Working Group." This model, dubbed "SCC," or the "Social Costs of Carbon," purports to estimate the global "monetized damages associated with an incremental increase in carbon emissions within a given year," accounting, among other things, for "changes in net agricultural productivity, human health, property damages from increased flood risk and the value of ecosystem services."

Even assuming that this model were correct and accurate in identifying and quantifying alleged monetary benefits resulting from supposed reductions in carbon emissions properly attributable to a rule affecting less than 10% of the nation's housing, the model is methodologically and statistically invalid in that it compares "apples to oranges," netting the supposedly "global" benefits of the proposed rule against purely domestic costs concentrated (in this case) within a small market and small industry. And even this baseless calculation is further skewed by the fact that only an artificially limited and constrained portion of the total domestic costs of the proposed rule – not reflecting the full market costs detailed above -- is netted against supposedly "global" benefits. This conflation of supposed "global benefits" being netted against only partial domestic costs attributable to the proposed rule, is not only arbitrary and capricious and in violation of EISA section 413, but also violates the directive of OMB Circular A-4, "Regulatory Analysis," which provides that regulatory "analysis should focus on benefits and costs that accrue to citizens and residents of the United States," in that it gives short shrift to domestic costs – excluding significant cost factors – while netting those partial domestic costs against alleged worldwide benefits.

Just as importantly, though, DOE admits that alleged SCC benefits are "uncertain" and "should be treated as revisable."¹⁰¹ Thus DOE attributes "benefits" to the proposed rule based on metrics acknowledged to be "uncertain," while it totally ignores predictable consumer, industry and national level costs of the proposed rule, which it totally ignores, thus over-inflating the alleged benefits of the proposed rule with junk science while significantly understating its costs. Indeed, while DOE exhibits great concern over the global "social costs" of carbon, it apparently could care less about the domestic social cost of millions of Americans who would be excluded from the benefits of homeownership under its rule, as it makes no effort whatsoever to quantify or consider those costs, which would be enormous.

⁹⁸ See, 81 Federal Register, No. 117, supra, at p. 39758.

⁹⁹ Id. at p. 39759.

¹⁰⁰ OMB Circular A-4 expressly states that if "a regulation ... is likely to have effects beyond the borders of the United States," those "effects should be reported <u>separately</u>," <u>not</u> netted against purely (and partial) domestic costs. (Emphasis added).)

¹⁰¹ See, 81 Federal Register, No. 117, <u>supra</u> at p. 39791.

Beyond the DOE-acknowledged "uncertainty" of the SCC model, however, and the failure of the DOE cost-benefit analysis to correctly, validly and lawfully net costs versus benefits attributable to the proposed rule, independent analysis demonstrates that the SCC model is scientifically and economically invalid. For example, a 2014 report by the Institute for Energy Research states, in relevant part: "[T]he use of the SCC as an input into federal regulatory actions is totally inappropriate. *** [T]he SCC is an arbitrary output from very speculative computer models. *** [T]he SCC as implemented by federal agencies is <u>completely</u> arbitrary and without theoretical or experimental support, not to mention a lack of data supporting the [SCC] calculation." (Emphasis added).¹⁰² Indeed, the most recent independent analysis of the SCC, issued in June 2016, indicates that not only does SCC modelling produce a social cost of carbon that is <u>overstated</u>, but that based on observed temperature changes – and not just climate models – the SCC may actually be <u>negative (i.e.</u>, that alleged carbon reduction yields <u>no</u> benefits and in fact, results in societal costs).¹⁰³

Given each of these fatal defects in the utilization of arbitrary and speculative SCC values – and the other fundamental analytical and data failures of the June 17, 2016 DOE cost-benefit analysis, that "analysis" is factually worthless and insufficient to meet the substantive requirements of EISA section 413 and the APA.

D. The DOE Cost-Benefit Analysis Fails to Properly Consider The Impact of the Proposed Rule on Smaller Industry Businesses

While DOE acknowledges that its June 17, 2016 proposed rule would have a significant negative impact on the manufactured housing industry – an industry that has seen production contract by more than 81% since 1998, with corresponding reductions in the number of producers – its cost-benefit analysis fails to fully or properly quantify the likely anti-competitive effects of its proposed rule and the resulting highly-negative impacts on industry small businesses and consumers.

DOE admits in the June 17, 2016 NOPR that its proposed rule would result in a decline in "industry net present value" of \$3.1 million to \$36.8 million. (See, 81 Federal Register, No. 117, supra at p. 39788). This calculation, however, was derived in significant part from information contained in 10-K filings with the U.S. Securities and Exchange Commission (SEC) (Id. at pp. 39787, 39794) which undoubtedly were filed by the larger industry corporate conglomerates. By interviewed just "two small manufacturers" regarding expected DOE contrast. industry/manufacturer impacts of the proposed rule. As a result of this failure to fully and properly quantify the expected impacts of the proposed rule on smaller businesses, DOE, in its NOPR, concedes that, under the Regulatory Flexibility Act (5 U.S.C. 601, et seq.) "since the proposed standards could cause competitive concerns for small manufacturers, DOE cannot certify that the proposed standards would not have a significant impact on a substantial number of small businesses." (Id. at p. 39794) (Emphasis added).

¹⁰² <u>See</u>, "Comment on Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order No. 12866," Institute for Energy Research (February 24, 2014).

¹⁰³ See, "Empirically-Constrained Climate Sensitivity and the Social Cost of Carbon," Heritage Foundation (2016).

Insofar as <u>DOE</u> has the "<u>affirmative burden</u> of promulgating and explaining a nonarbitrary, non-capricious rule," <u>see</u>, <u>Small Refiner Lead Phase-Down Task Force v. U.S.</u> <u>Environmental Protection Agency</u>, <u>supra</u> – DOE's failure to fully quantify and certify the effect of its proposed rule on small industry manufacturers is, <u>per se</u>, a fatal defect that should invalidate the June 17, 2016 proposed rule.

And while it is not the burden of public commenters or stakeholders to quantify, justify, or disprove any proposed agency action or standard, the proposed rule would have a disproportionately and profoundly negative impact on smaller manufacturers and smaller industry businesses. As has been documented by the U.S. Small Business Administration (SBA), federal regulation generally has a disproportionately negative impact on smaller businesses in any industry.¹⁰⁴ As a matter of basic business economics, larger businesses can amortize regulationdriven price increases over a broader base of production than smaller businesses, resulting in a diminished overall and per-unit impact. Further, and more importantly, the industry's largest corporate conglomerate¹⁰⁵ with nearly 50% of the domestic HUD Code market, has already demonstrated that it has the resources and ability to offset - for its customers - purchase price increases of the magnitude that will be caused by the DOE proposed rule. Specifically, in June 2015, Clayton Homes, Inc. (Clayton) offered purchasers of upgraded "Energy Smart" Clayton homes a rebate of up to \$3,000.00 on energy utility bills during the first year after purchase of the home.¹⁰⁶ Not coincidentally, this amount approximates the average retail manufactured home price increase information provided to the MHWG and DOE, and incorporated in the DOE June 17, 2016 NOPR. Consequently, there is already significant evidence that Clayton - having supported the DOE-proposed standard during the MHWG "negotiated rulemaking" process - will use its superior resources and market strength to cushion or offset DOE standards-driven purchase price increases for its customers, drawing potential homebuyers away from smaller producers.

Over time, this phenomenon will result in further consolidation within an industry that has already seen a substantial reduction in the number of producing companies and the emerging domination of the industry by three large corporate conglomerates¹⁰⁷ with a corresponding reduction in competition and – ultimately – higher prices and fewer choices for consumers.

Again, though, DOE's cost-benefit analysis fails to address, consider or account-for these negative impacts – and their related costs -- on consumers, the industry and the nation as a whole.

¹⁰⁴ See, "The Impact of Regulatory Costs on Small Firms," U.S. Small Business Administration (September 2010).

¹⁰⁵ <u>I.e.</u>, Clayton Homes, Inc., a corporate subsidiary of Berkshire Hathaway, Inc.

¹⁰⁶ See, Attachment 26, hereto.

¹⁰⁷ See, "2015 Home Buyers' Outlook," The Grissim Guides to Manufactured Homes and Land ("[T]the MH industry contraction during the recession brought with it a lot of bankruptcies, closures, mergers and acquisitions. As a consequence the industry landscape today is markedly different than it was as recently as January 2008 when more than 60 companies nationally were building homes in 195 production facilities around the country. Currently, only 46 active corporations remain, and the number of factory production lines has dropped to 125 (a loss of 70). One upshot of this shake-out is that roughly 68% of the MH industry is now dominated by three major producers and their subsidiaries: Clayton Homes, Inc. (with a market share of 41%), Champion Home Builders, Inc. (15%) and Cavco Industries (12%). Of these three … Clayton Homes, Inc. is far and away the dominant player. Not only is its market share way more than its two nearest competitors combined, but the company also owns two major banks–Vanderbilt Mortgage and 21st. Century–that specialize in retail MH loans which together account for 35% of all MH home loans. In fact, annual combined profit from the two banks significantly exceeds that from the sale of homes from Clayton and its many subsidiary builders."

This type of extreme negative economic and societal impact was correctly explained in the DOE "hearth products" rule comments submitted by the Mercatus Center of The George Mason University: "[T]his regulation will disproportionately burden small businesses and benefit large manufacturers. This regulation will become an income transfer scheme as small businesses go out of business competing with large manufacturers, giving large manufacturers access to a larger consumer base and increasing their income. This is an income transfer scheme that will produce unintended consequences, including causing an industry to be dominated by a few large firms." Id. at p. 5.

Insofar as none of these significant cost impacts and factors are considered by DOE in its cost-benefit analysis for the June 17, 2016 proposed rule, that rule is fatally deficient, unsupported by proper and sufficient evidence and legally unsustainable.

IV. <u>CONCLUSION</u>

From the start, this rulemaking has been fundamentally and irretrievably tainted. The entire process utilized by DOE to produce the current proposed standards has been ill-conceived, deceptive, non-transparent, biased and, ultimately, unlawful. Instead of engaging in a legitimate rulemaking process, designed to elicit relevant facts and considerations, and then proceed to a well-reasoned proposal, this process has been one of a costly, disruptive and draconian pre-ordained result seeking "cover" from self-interested and special interest supporters participating in a coordinated, sham proceeding. That phony proceeding has now led to a proposed rule based on a deceitful and fatally defective cost-benefit analysis that nets all conceivable (and entirely speculative) alleged benefits, on a "global" scale, against a blatantly incomplete and deficient assessment and analysis of corresponding consumer, industry and national costs.

For all of the foregoing reasons, as detailed herein, MHARR strenuously opposes the June 17, 2016 proposed rule both procedurally and substantively and calls on DOE: (1) to withdraw that proposed rule; (2) to establish a credible, legitimate and untainted rulemaking process to develop appropriate standards consistent with EISA section 413 and existing federal manufactured housing law from a "fresh start" as originally directed by OMB/OIRA; and (3) to develop credible, reasonable and cost-effective standards consistent with EISA section 413 that will <u>not</u> result in the exclusion of millions of lower and moderate-income Americans from the manufactured housing market or homeownership entirely.

Very truly yours,

Mark Weiss President and CEO

cc: Hon. Ernest Moniz

ĩ

Hon. Julian Castro

Chairman and Ranking Member, Senate Energy and Natural Resources Committee Chairman and Ranking Member, House Energy and Commerce Committee Chairman and Ranking Member, Senate Banking Housing and Urban Affairs Committee

Chairman and Ranking Member, House Financial Services Committee

Office of Advocacy, U.S. Small Business Administration

Proposed Rules

This section of the FEDERAL REGISTER contains notices to the public of the proposed issuance of rules and regulations. The purpose of these notices is to give interested persons an opportunity to participate in the rule making prior to the adoption of the final rules.

DEPARTMENT OF ENERGY

10 CFR Part 430

[EERE-2021-BT-STD-0003]

RIN 1904-AF13

Energy Conservation Program for Appliance Standards: Procedures, Interpretations, and Policies for Consideration in New or Revised Energy Conservation Standards and Test Procedures for Consumer Products and Commercial/Industrial Equipment

AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy.

ACTION: Extension of public comment period.

SUMMARY: On July 7, 2021, the U.S. Department of Energy ("DOE") published a notice of proposed rulemaking ("NOPR") pertaining to procedures, interpretations, and policies for consideration in new or revised energy conservation standards and test procedures for consumer products and commercial/industrial equipment. The notice provided an opportunity for submitting written comments, data, and information by August 23, 2021. On July 29, 2021, DOE received a request from the Association of Home Appliance Manufacturers, the Air Conditioning, Heating, and Refrigeration Institute, and the National Electrical Manufacturers Association ("Joint Commenters"), to extend the public comment period to September 13, 2021. DOE has reviewed this request and is granting an extension of the public comment period to allow public comments to be submitted until September 13, 2021.

DATES: The comment period for the NOPR published on July 7, 2021 (86 FR 35668) is extended. DOE will accept comments, data, and information regarding this NOPR on or before September 13, 2021.

ADDRESSES: Interested persons are encouraged to submit comments using the Federal eRulemaking Portal at www.regulations.gov. Follow the instructions for submitting comments. Alternatively, interested persons may submit comments, identified by docket number EERE–2021–BT–STD–0003 by any of the following methods:

1. Federal eRulemaking Portal: www.regulations.gov. Follow the instructions for submitting comments. 2. Email: To

processrule2021STD0003@ee.doe.gov. Include docket number EERE–2021–BT– STD–0003 in the subject line of the message.

No telefacsimilies ("faxes") will be accepted.

Although DOE has routinely accepted public comment submissions through a variety of mechanisms, including postal mail and hand delivery/courier, the Department has found it necessary to make temporary modifications to the comment submission process in light of the ongoing COVID-19 pandemic. DOE is currently suspending receipt of public comments via postal mail and hand delivery/courier. If a commenter finds that this change poses an undue hardship, please contact Appliance Standards Program staff at (202) 586-1445 to discuss the need for alternative arrangements. Once the COVID-19 pandemic health emergency is resolved, DOE anticipates resuming all of its regular options for public comment submission, including postal mail and hand delivery/courier.

Docket: The docket for this activity, which includes Federal Register notices, comments, and other supporting documents/materials, is available for review at www.regulations.gov. All documents in the docket are listed in the www.regulations.gov index. However, not all documents listed in the index may be publicly available, such as information that is exempt from public disclosure.

The docket web page can be found at: www.regulations.gov/docket/EERE-2021-BT-STD-0003. The docket web page contains instructions on how to access all documents, including public comments, in the docket.

FOR FURTHER INFORMATION CONTACT: Mr. John Cymbalsky, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE–5B, 1000 Independence Avenue SW, Washington, DC 20585–0121. Telephone: (202) 287–

ATTACHMENT 2

43429

Federal Register

Vol. 86, No. 150

Monday, August 9, 2021

1692. Email:

ApplianceStandardsQuestions@ ee.doe.gov.

Mr. Pete Cochran, U.S. Department of Energy, Office of the General Counsel, GC-33, 1000 Independence Avenue SW, Washington, DC 20585-0121. Telephone: (202) 586-9496. Email: Peter.Cochran@hq.doe.gov.

For further information on how to submit a comment or review other public comments and the docket contact the Appliance and Equipment Standards Program staff at (202) 287– 1445 or by email:

ApplianceStandardsQuestions@ ee.doe.gov.

SUPPLEMENTARY INFORMATION: On April 12, 2021, DOE proposed major revisions to the Department's "Procedures, Interpretations, and Policies for Consideration of New or Revised Energy **Conservation Standards and Test Procedures for Consumer Products and** Certain Commercial/Industrial Equipment'' ("Process Rule") in a notice of proposed rulemaking that accepted comments on those proposed revisions through May 27, 2021 (86 FR 18901). In a subsequent NOPR that published on July 7, 2021, DOE proposed additional revisions to the Process Rule and requested comment on the proposals and any potential alternatives (86 FR 35668). These additional proposed revisions are consistent with current DOE practice and would remove unnecessary obstacles to DOE's ability to meet its statutory obligations under the Energy Policy and Conservation Act ("EPCA"). On July 29, 2021, interested parties in the matter, the Joint Commenters, requested an extension of the public comment period for the NOPR to September 13, 2021.¹ The Joint Commenters asked for this additional time due to their assertion that the proposed rule is complex and multifaceted which requires more time to effectively review it and formulate their comments. The Joint Commenters also stated that they would need more time after the public webinar to formulate and submit their comments.

DOE has reviewed the request and is extending the comment period to September 13, 2021 to allow additional

¹ The joint commenters submitted the request to DOE via email and is available in the docket at https://www.rcgulations.gov/document/EERE-2021-BT-STD-0003-0047.

time for interested parties to submit comments.

Signing Authority

This document of the Department of Energy was signed on August 2, 2021, by Kelly Speakes-Backman, Principal Deputy Assistant Secretary and Acting Assistant Secretary for Energy Efficiency and Renewable Energy, pursuant to delegated authority from the Secretary of Energy. That document with the original signature and date is maintained by DOE. For administrative purposes only, and in compliance with requirements of the Office of the Federal Register, the undersigned DOE Federal Register Liaison Officer has been authorized to sign and submit the document in electronic format for publication, as an official document of the Department of Energy. This administrative process in no way alters the legal effect of this document upon publication in the Federal Register.

Signed in Washington, DC, on August 3, 2021.

Treena V. Garrett,

Federal Register Liaison Officer, U.S. Department of Energy. [FR Doc. 2021-16828 Filed 8-6-21; 8:45 am] BILLING CODE 6450-01-P

DEPARTMENT OF ENERGY

10 CFR Part 431

[EERE-2020-BT-STD-0018]

RIN 1904-AE54

Energy Conservation Program: Energy Conservation Standards for Certain Commercial and Industrial Equipment; Early Assessment Review; Commercial and Industrial Pumps

AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy,

ACTION: Request for information.

SUMMARY: The U.S. Department of Energy ("DOE") is undertaking an early assessment review for amended energy conservation standards for commercial and industrial pumps ("pumps") to determine whether to amend applicable energy conservation standards for this equipment. Specifically, through this request for information ("RFI"), DOE seeks data and information to evaluate whether amended energy conservation standards would result in a significant savings of energy; be technologically feasible; and be economically justified. DOE welcomes written comments from the public on any subject within the scope of this document (including those

topics not specifically raised in this RFI), as well as the submission of data and other relevant information concerning this early assessment review.

DATES: Written comments and information are requested and will be accepted on or before September 8, 2021.

ADDRESSES: Interested persons are encouraged to submit comments using the Federal eRulemaking Portal at https://www.regulations.gov. Follow the instructions for submitting comments. Alternatively, interested persons may submit comments, identified by docket number EERE-2021-BT-STD-0018, by any of the following methods:

1. Federal eRulemaking Portal: https://www.regulations.gov. Follow the instructions for submitting comments.

2. Email: to Pumps2021STD0018@ ee.doe.gov. Include docket number EERE-2021-BT-STD-0018 in the subject line of the message.

No telefacsimiles ("faxes") will be accepted. For detailed instructions on submitting comments and additional information on this process, see section III of this document.

Although DOE has routinely accepted public comment submissions through a variety of mechanisms, including postal mail and hand delivery/courier, the Department has found it necessary to make temporary modifications to the comment submission process in light of the ongoing Govid-19 pandemic. DOE is currently suspending receipt of public comments via postal mail and hand delivery/courier. If a commenter finds that this change poses an undue hardship, please contact Appliance Standards Program staff at (202) 586-1445 to discuss the need for alternative arrangements. Once the Covid-19 pandemic health emergency is resolved, DOE anticipates resuming all of its regular options for public comment submission, including postal mail and hand delivery/courier.

Docket: The docket for this activity, which includes Federal Register notices, comments, and other supporting documents/materials, is available for review at https:// www.regulations.gov. All documents in the docket are listed in the https:// www.regulations.gov index. However, some documents listed in the index, such as those containing information that is exempt from public disclosure, may not be publicly available.

The docket web page can be found at: http://www.regulations.gov/docket/ EERE-2021-BT-STD-0018. The docket web page contains instructions on how to access all documents, including

public comments, in the docket. See section III for information on how to submit comments through https:// www.regulations.gov.

FOR FURTHER INFORMATION CONTACT:

Mr. Jeremy Dommu, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-5B, 1000 Independence Avenue SW, Washington, DC 20585-0121. Telephone: (202) 586-9870. Email:

ApplianceStandardsQuestions@ ee.doe.gov.

Mr. Michael Kido, U.S. Department of Energy, Office of the General Counsel, GC-33, 1000 Independence Avenue SW, Washington, DC 20585–0121. Telephone: (202) 586–8145. Email: Michael.Kido@hq.doe.gov.

For further information on how to submit a comment or review other public comments and the docket. contact the Appliance and Equipment Standards Program staff at (202) 287-1445 or by email:

ApplianceStandardsQuestions@ ee.doe.gov.

SUPPLEMENTARY INFORMATION:

Table of Contents

- I. Introduction
 - A. Authority
- B. Rulemaking History II. Request for Information

 - A. Scope and Equipment Classes
 - B. Significant Savings of Energy 1. Base Case Efficiency Distribution
 - 2. Energy Use

 - 3. National Energy Savings C. Technological Feasibility

 - 1. Technology Options
 - 2. Representative Units
 - 3. Efficiency Levels
- D. Economic Justification
- 1. Distribution Channels
- 2. Life-Cycle Cost and Payback Period Analysis

III. Submission of Comments

I. Introduction

DOE has established an early assessment review process to conduct a more focused analysis to evaluate, based on statutory criteria, whether a new or amended energy conservation standard is warranted. Based on the information received in response to the RFI and DOE's own analysis, DOE will determine whether to proceed with a rulemaking for a new or amended energy conservation standard. If DOE makes an initial determination that a new or amended energy conservation standard would satisfy the applicable statutory criteria or DOE's analysis is inconclusive, DOE would undertake the preliminary stages of a ruleinaking to issue a new or amended energy conservation standard. If DOE makes an

			Unit	s by Strue	Units by Structure Type	Ð				
	Total	1, detach	1, affac	2 to 4 Units	5 to 9	10 to	20 to	50 or	Manu	Othe
Characte		ed	hed			Units	Units	liote	red/	(Boat
ristics									mobil	, RV,
									e	van,
Est	Estimate	Estima	Estim	Estim	Estim	Estim	Estim	Estimate	Esti	Esti
		te	ate	ate	ate	ate	ate		mate	mate
Monthly Cost Paid for Electricity										
Electricity paid										
separately	118,193	78,288	6.219	8.280	5.393	4 743	4 028	2 2 2 2	רת מ	20
Less than \$25	1,440	653	S	213	114	84	120	142	S.	12
\$25 to \$49	9,582	3,297	440	1,709	992	872	766	1.060	416	s.
\$50 to \$74	19,455	10,062	1,052	2,295	1,525	1,295	1.191	1.266	754	S
\$75 to \$99	20,761	12,779	1,161	1,750	1,132	1,105	. 875	965	886	s o
\$100 to \$149	32,361	22,947	1,873	1,590	1,183	1,012	821	849	2.071	s
\$150 to \$199	17,833	14,202	885	499	316	254	185	232	1.255	S
\$200 or more	16,760	14,348	784	225	131	122	70	86	982	
Median (dollars) ⁵	109	124	108	74	75	77	73	72	122	69
Mean (dollars) ⁵	126	141	125	84	85	85	81	80	133	82
Included in rent, other fee, or obtained free	5,827	696	247	830	610	420	675	1,855	197	S C
Monthly Cost Paid for Gas										
Gas paid separately	76,452	56,924	4,466	4,847	2,254	1.788	1.518	1 813	2 782	ло
Less than \$25	9,979	4,728	505	1,152	727	561	650	510 ¹	718	n
\$25 to \$49	24,417	17,259	1,419	1,809	994	769	510	601	1 044	מ מ
\$50 to \$74	19,728	16,051	1,276	933	333	301	201	186	447	s c
\$75 to \$99	10,083	8,421	680	425	104	94	100	61	194	თ
\$100 to \$149	7,690	6,595	402	334	72	S	S	48	180	S

ATTACHMENT 3

Rel & OI UCI &	\$100 to \$149		\$75 to \$99	\$50 to \$74	\$25 to \$49	Less than \$25	Other fuel paid separately	Monthly Cost Paid for Other Fuel	fee, or obtained free	Included in rent other	Mean (dollare)s	Median (dollare)5	\$200 or more	\$150 to \$199	\$100 to \$149	\$75 to \$99	\$50 to \$74	\$25 to \$49	Less than \$25	Fuel oil paid separately	Monthly Cost Paid for Fuel Oil ⁴	fee, or obtained free	Included in rent other	Moon (dollaro)s		\$100 or more
103	238	301		601	1,079	2,067	4,530		1,891	141	CZI	105	1 235	917	1,212	717	640	363	325	5,408		8,273	80	50	2,290	2,258
79	175	310		482	897	1,712	3,719		269	143	C71	-,070	1 078	795	1,051	599	504	294	228	4,548		2,044	/3	b D D D	6/6'L	1,891
s	S	c.		S	S	48	93		63	G71.	100		את 1	S	42	45	S	S	S	275		312	64	54	66	119
•	s	S		S	S	53	86		288	163	UDL	202	30	so o	S	37	S	S	S	247		1,172	53	40	08	115
	S	S	c	'n	S	50	59		205	55	U.	<u>.</u>	c	s o	S	S	S		S	ω		825	40	31	S	S
•					S	29	36		130	148	S.	o u	o c	מ	s	S	S	S	S	S		809	41	32	S	S
S	s	S	· · · ·		S	S	S		282	S	S	U.		n .		S	S		S	32		951	40	28	S	S
S		S	U	0 0	S	S	31		641	159	150	c.	0	0 0	מ	s.			S	37		1,904	31	25	s	S
S	44	S	88	0 0 0	120	147	465		S	88	83	S	0 0	20	200	s S	31	s	2	172		233	00	40	126	73
	•				-					•	•	•	•	***********************	Provide and a second second	and a constraint of the						S	S	S	S	S

120 103 43	42 41 41 32 23	25 25 S 21 S	
43 56	23 10		
s s		S S	•
112	ა	S	•
317	55	33	S
	•	•	•

-

Home Innovation RESEARCH LABSTM

2021 IECC Residential Cost Effectiveness Analysis

Prepared For

National Association of Home Builders

June 2021

Report No. CR1391_06112021

400 Prince George's Blvd. | Upper Marlboro, MD 20774 | 800.638.8556 | HomeInnovation.com

Disclaimer

Neither Home Innovation Research Labs, Inc., nor any person acting on its behalf, makes any warranty, expressed or implied, with respect to the use of any information, apparatus, method, or process disclosed in this publication or that such use may not infringe privately owned rights, or assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this publication, or is responsible for statements made or opinions expressed by individual authors.

Condition/Limitation of Use

Home Innovation Research Labs is accredited by IAS in accordance with ISO 17020, ISO 17025, and ISO 17065. The evaluations within this report may or may not be included in the scopes of accreditation. Accreditation certificates are available at iasonline.org.

This report may be distributed in its entirety, but excerpted portions shall not be distributed without prior written approval of Home Innovation Research Labs.

TABLE OF CONTENTS

Acronyms, Abbreviations, and Definitionsii
Background1
Methodology1
Standard Reference House2
Representative Locations
Configurations and Weighted Averaging5
HVAC and Water Heating Equipment6
Changes for 20217
Results
Construction Costs
Energy Use Costs and Savings10
Cost Effectiveness
Cost Effectiveness of Selected Code Changes12
Conclusions
Appendix A: Cost of Individual Code Changes15
Appendix B: Construction Cost by Climate Zone53
Appendix C: Location Adjustment Factors58
Appendix D: 2021 IECC Insulation and Fenestration Changes59
Appendix E: Energy Use by Climate Zone60

ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

AC	Air Conditioner
AFUE	Annual Fuel Utilization Efficiency
c.i.	Continuous Insulation
СОР	Coefficient of Performance
CZ	Climate Zone
EA	Each
EF	Energy Factor
ERI	Energy Rating Index
GF	Gas Furnace
HP	Heat Pump
HPWH	Heat Pump Water Heater
HPWH HSPF	Heat Pump Water Heater Heating Seasonal Performance Factor
HSPF	Heating Seasonal Performance Factor
HSPF IECC	Heating Seasonal Performance Factor International Energy Conservation Code
HSPF IECC IRC	Heating Seasonal Performance Factor International Energy Conservation Code International Residential Code
HSPF IECC IRC LF	Heating Seasonal Performance Factor International Energy Conservation Code International Residential Code Linear Feet
HSPF IECC IRC LF O&P	Heating Seasonal Performance Factor International Energy Conservation Code International Residential Code Linear Feet Overhead and Profit
HSPF IECC IRC LF O&P SEER	Heating Seasonal Performance Factor International Energy Conservation Code International Residential Code Linear Feet Overhead and Profit Seasonal Energy Efficiency Ratio

BACKGROUND

The 2021 International Energy Conservation Code (IECC) includes several changes which impact both energy savings and construction costs for residential construction.

The objective of this analysis is to quantify the incremental construction cost and energy use cost savings associated with constructing a house compliant with the 2021 IECC relative to a 2018 IECC baseline and to evaluate the cost-effectiveness of the code changes.

METHODOLOGY

To evaluate the cost effectiveness of the 2021 IECC changes, Home Innovation Research Labs (Home Innovation) determined incremental construction costs and energy use costs using a Standard Reference House with multiple configurations and in multiple locations, constructed in accordance with the prescriptive compliance requirements of the 2018 IECC and 2021 IECC Residential Provisions ("Sections R401 through R404" in the 2018 IECC; "Prescriptive Compliance Option" in the 2021 IECC). The results provided a basis for estimating energy use savings and simple paybacks.

The analysis for this study is based on a methodology¹ developed by Home Innovation (formerly NAHB Research Center) to calculate energy savings. This methodology defined a Standard Reference House, including the building configuration and energy performance parameters, that was originally used to report an analysis of the 2012 IECC code changes².

For analysis in this report, annual energy use costs were developed using BEopt³ 2.8.0.0 hourly simulation software and energy prices from the U.S. Energy Information Agency⁴. The energy prices are national average annual 2019 residential prices: \$0.1301/kWh for electricity; \$1.051/therm for natural gas.

Construction costs were developed based on RSMeans⁵ 2021 Residential Cost Data. Costs for mechanical equipment were sourced from distributor web sites. Costs associated with testing or documentation provided by an energy rater were estimated based on an internet search of fees on rater web sites. Cost details are provided for individual code changes in Appendix A and by climate zone in Appendix B.

Appendix A costs are reported as both total to the builder and total to consumer. The total cost to builder includes overhead and profit (designated in the tables as "w/O&P") applied to individual component costs (materials and labor) to represent the cost charged by the sub-contractor. The total cost to consumer is based on applying a builder's gross profit margin of 19.0% to the builder's total cost⁶. These represent national average costs. For specific locations, the Appendix A costs could be

https://eveonhousing.org/2019/03/builders-profit-margins-continue-to-slowlyincrease/? ga=2.73913042.1310550892.1620653840-1896975365.1593698293

¹ Methodology for Calculating Energy Use in Residential Buildings. NAHB Research Center, May 2012.

² 2012 IECC Cost Effectiveness Analysis. NAHB Research Center, May 24, 2012.

³ BEopt (Building Energy Optimization Tool) software: <u>https://beopt.nrel.gov/home</u>

⁴ Energy Information Agency: <u>https://www.eia.gov/</u>

⁵ RSMeans, <u>https://www.rsmeans.com/</u>

⁶ Industry average gross profit margin for 2017, as reported in NAHB's Builder's Cost of Doing Business Study, 2019 Edition.

modified by applying the appropriate location adjustment factor from RSMeans; selected location adjustment factors from RSMeans are listed in Appendix C.

Standard Reference House

The building geometry (Figure 1) used in this analysis is documented in the methodology paper and was originally developed using Home Innovation's 2009 Annual Builder Practices Survey (ABPS) for a representative single-family detached home. The parameters represent the average values from the ABPS for building areas and features not dictated by the IECC. The geometry has been updated based on Home Innovation's 2019 ABPS. Table 1 shows the floor, attic, wall, and window areas used in the Standard Reference House for this study.

Reference House Component	Area (SF)
1st floor conditioned floor area (CFA)	1,875
2nd floor CFA	625
Total CFA without conditioned basement	2,500
Foundation perimeter, linear feet (LF)	200 LF
Slab/basement/crawl floor area	1,875
Total CFA with conditioned basement	4,375
Ceiling area adjacent to vented attic	1,875
1st floor gross wall area (9' height)	1,800
2nd floor gross wall area (8.75' height)	875
Total above grade wall area (excludes rim areas)	2,675
Basement wall area (8' height; 2' above grade)	1,600
Crawlspace wall area (4' height; 2' above grade)	800
Window area (15% of CFA above grade)	375

Table 1. Average Wall and Floor Areas of the Reference House

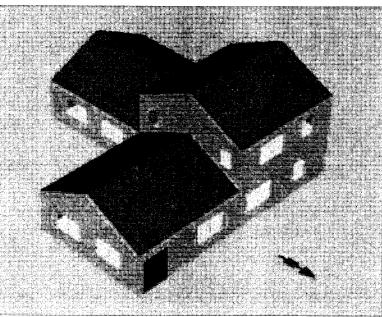
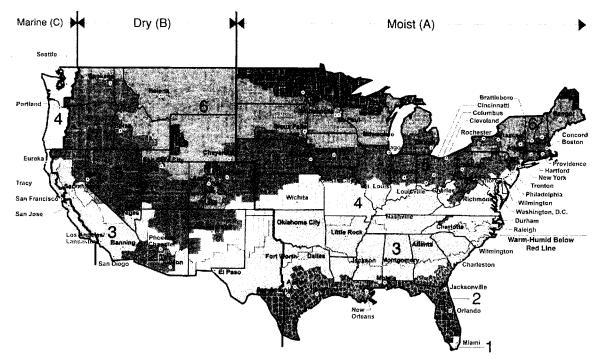


Figure 1. Simulation Model of Standard Reference House


Representative Locations

Six cities (Table 2) representing DOE Climate Zones 2 through 7 (Figure 2) were selected to quantify energy savings for their respective climates.

		Table 2. Repre	sentative Loca	tions		
Climate Zone	2	3	4	5	6	7
City	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
State	Arizona	Tennessee	Maryland	Illinois	Montana	Minnesota
Moisture Region	Dry	Moist	Moist	Moist	Dry	N/A
HDD65*	1,050	2,960	4,600	6,330	7,660	9,570
CDD65*	4,640	2,110	1,233	842	317	162

Table 2. Representative Locations

*Daily Average Weather Data (TMY). Source: Residential Energy Dynamics, redcalc.com

All of Alaska in Zone 7 except for the following Boroughs in Zone 8: Belhel, Deilingham, Fairbanks, N. Star, Nome North Stope, Northwest Arctic, Southeast Fairbanks, Wade Hampton, and Yukon-Koyukuk Zone 1 includes: Hawali, Guam, Puerto Rico, and the Virgin Islands

Configurations and Weighted Averaging

Weighted averaging was applied both within and across climate zones based on market statistics for new single-family detached homes as reported by the 2019 ABPS. Within climate zones, weight factors were applied for wall types (light-framed and mass walls) and foundation types (slab, basement, and crawlspace).

The heating fuel used for this analysis, either natural gas or electric, was selected based on the predominant heating fuel in each climate. The predominant fuel for heating is also used for domestic hot water. All other appliances are electric.

Once the costs within a climate zone were determined, a weighted calculation according to housing starts for each climate zone was performed to obtain a national average across climate zones. Weighting averages used for this analysis are shown in Table 3.

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Component	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
Primary heating fuel	Electric	Electric	Nat Gas	Nat Gas	Nat Gas	Nat Gas
Mass Wall	30%	10%				
Frame Wall	70%	90%	100%	100%	100%	100%
Slab Foundation	100%	75%	20%	15%	5%	30%
Basement Foundation, finished		10%	60%	70%	90%	5%
Crawlspace, vented		15%	20%			
Crawlspace, conditioned				15%	5%	65%
Housing Starts	28%	28%	21%	17%	5%	1%

Table 3. Construction Data. Source: adapted from Home Innovation's 2019 ABPS

HVAC and Water Heating Equipment

The Reference Houses utilize federal minimum efficiency HVAC systems and water heaters as shown in Table 4, except where the 2021 IECC houses are evaluated separately with higher efficiency equipment options suitable for the climate as shown in Table 5.

High efficiency HVAC systems for electric houses consist of air-source heat pump systems (i.e., not ground source or geothermal systems) with variable speed compressors ("inverter" drive compressors that provide variable refrigerant flow). The inverter systems are generally required to meet the minimum HSPF requirement for the heat pump efficiency option for 2021 (10 HSPF/16 SEER; see next section for description of 2021 efficiency package options). In addition to higher efficiencies, inverter systems are considered more suitable for colder climates because these can ramp up to provide higher heating capacities at lower outdoor temperatures compared to typical single-stage or two-stage equipment.

High efficiency water heaters for electric houses consist of heat pump water heater, 50 gallon capacity, 2.0 EF⁷

Reference House	Equipment
Car	80 AFUE gas furnace + 13 SEER air conditioner (CZ 5-7) or 14 SEER (CZ 4)
Gas	40 gallon gas natural draft water heater, 0.58 UEF
Els studio	14 SEER/8.2 HSPF air source heat pump
Electric	50 gallon electric water heater, 0.92 UEF
	Table 5. High Efficiency Equipment Options
Reference House	Equipment
6	95 AFUE gas furnace + 16 SEER air conditioner
Gas	Tankless gas direct vent water heater, 0.82 UEF
Ele etuio	16 SEER/10 HSPF inverter heat pump, rated to 7°F (CZ 2-3) or -13°F (CZ 5)
Electric	Heat pump water heater, 50 gal, 2.0 EF

Table 4. Standard Efficiency Equipment

⁷ UEF (Uniform Energy Factor) is the current measure of water heater overall efficiency; the higher the UEF value, the more efficient the water heater; UEF is determined by the Department of Energy's test method outlined in 10 CFR Part 430, Subpart B, Appendix E.

Changes for 2021

There are significant changes in the 2021 IECC compared to the 2018 IECC that impact construction cost and energy use cost. Changes to the prescriptive insulation and fenestration requirements include increased ceiling insulation (CZ 2-8), increased continuous insulation on frame walls (CZ 4-5), increased slab insulation (CZ 3-5), and lower window U-factor (CZ 3-4); these changes are shown in Appendix D.

Additional requirements include changes for lighting efficiency and controls; additional air sealing; duct testing even if ducts are entirely inside conditioned space; increased fan efficacy and testing for whole-dwelling ventilation fans; installing an HRV or ERV in CZ 7-8.

The 2021 IECC also has a new section that establishes additional requirements appliable to all compliance approaches to achieve additional energy efficiency (R401.2.5 Additional energy efficiency). The prescriptive approach requires installing one of the five prescribed additional efficiency package options:

- Enhanced envelope performance (5% improvement of UA and SHGC)
- More efficient HVAC equipment performance (minimum 95 AFUE natural gas furnace and 16 SEER air conditioner, 10 HSPF/16 SEER air source heat pump, or 3.5 COP ground source heat pump)
- Reduced energy use in service water-heating (minimum 0.82 EF fossil fuel water heater, 2.0 EF electric water heater, or 0.4 solar fraction solar water heating system)
- More efficient duct thermal distribution system (100% of ducts and air handlers located entirely within the building thermal envelope, 100% ductless systems, or 100% duct system located in conditioned space as defined by Section R403.3.2)
- Improved air sealing (max 3.0 ACH50) and efficient ventilation (ERV or HRV: min 75% SRE; max 1.1 CFM/Watt; shall not use recirculation as a defrost strategy; min 50% LRMT for ERV). For this study, when evaluating this option, the ERV (CZ 2-4) or HRV (CZ 5-7) was modeled in accordance with the 2021 IRC that provides for a ventilation rate credit of 30% where certain criteria are met; houses in CZ 2 were also modeled with a tighter building enclosure (3 ACH50 instead of 5 ACH50).

For houses that already meet the requirements for the efficient duct option (e.g., ducts and air handlers located entirely inside conditioned space) or efficient ventilation/improved air sealing option (e.g., HRV or ERV is now required in CZ 7), no additional efficiency package is required; otherwise, one of the efficiency packages must be selected at additional cost. For this study, the methodology defines houses with basement and conditioned crawlspace foundations as having ducts and air handlers inside conditioned space, and houses with slab and vented crawlspace foundatons as having some ducts outside of conditioned space. Therefore, only houses with slab and vented crawlspace foundations were evaluated for the efficient duct option.

The enhanced envelope option was not evaluted for this study due to it is not considered a reasonably viable option for builders at this time.

For the 2021 IECC, 10 code changes were identified that are considered to have a direct impact on energy use in residential buildings, for a sufficient number of new homes, and which can be reasonably

quantified in estimating energy impact. Those 10 changes were included in the energy modeling and are identified in Table 6 with an asterisk.

RESULTS

Construction Costs

The incremental construction costs for the individual code changes that were selected to be evaluated for this study are summarized in Table 6. The cost details are provided in Appendix A for individual changes; Appendix B shows costs by climate zone. The weighted averages of construction costs are shown in Table 7. Changes that represent potential additional construction costs that may or may not affect the Reference House are shown separately in Table 8.

Proposal	Description	Affected CZ	Reference House
RE7*	Lighting: revised definition of high-efficacy	All	\$0
RE18/20/21	Certificate: additional info	All	\$99
RE29*	Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6)	4-5	\$4,970
RE32*	Slab edge: NR to R10/2 (CZ3)	3	\$1,988
"	Slab edge: R10/2 to R10/4 (CZ4-5)	4-5	\$993
RE33*	Ceiling insulation R38 to R49	2-3	\$1,366
RE36*	Ceiling insulation R49 to R60	4-7	\$1,366
RE34	Floors, removes exception for min R19 if fills cavity	5-8	NA
RE35*	Windows: reduces U-value from 0.32 to 0.30	3-4	\$76
RE37	Windows: changes SHGC form NR to 0.40	5 & 4C	\$0
RE105	Windows: reduces max SHGC tradeoff from 0.50 to 0.40	2-3	\$0
RE46	Attic access hatch: no direct cost; cost of additional insulation	All	\$13
RE49	Baffles at attic access	All	\$12
RE72	Air seal narrow framing cavities	All	\$156
RE82	Air seal rim (basement; unvented crawlspace)	All	\$1,252
11	Air seal rim (slab, vented crawlspace)	All	\$417
RE96	House tightness, allows trade-off for performance path	All	\$0
RE103	Air seal electrical & communication outlet boxes	All	\$369
RE106	Thermostat: requires 7-day programming	All	\$0
RE112	Removes exception for duct test (basement, unvented crawl)	All	\$247
RE130	Adds requirement to test whole-dwelling ventilation	All	\$62
RE133*	Updates ventilation fan efficacy (affects bath EF)	All	\$66
RE139*	Requires ERV/HRV in CZ 7-8 (includes RE134 reqs.)	7	\$3,206
RE145*	Lighting: 100% high-efficacy; controls (slab)	All	\$49
ff	Lighting: 100% high-efficacy; controls (basement, crawl)	All	\$60
RE148	Lighting, commercial	All	NA
RE149	Lighting: exterior controls	All	\$25
RE151	Performance path backstop: 2009 IECC	All	NA
RE178	Performance path ventilation type to match proposed	All	NA
CE40.2	Insulation certificate if no manufacturer mark (i.e., blown)	All	\$15
CE151.2	Defines duct TDE; adds requirements for underground ducts	All	NA

Table 6. Incremental Construction Cost of Individual Code Change for the Reference House

- --

- -

.

RE209*	Additional efficiency package options:	All	
	HVAC, gas house, 95 AFUE/16 SEER for 13 SEER baseline	5-7	\$1,494
	HVAC, gas house, 95 AFUE/16 SEER for 14 SEER baseline	4	\$1 <i>,</i> 317
	HVAC, electric house, 10 HSPF/18 SEER heat pump rated to 7F	2-3	\$5 <i>,</i> 721
	HVAC, electric house, 10 HSPF/16 SEER (10/18, rated -13F)	5	\$8,196
	Water Heater, gas house, tankless direct-vent, 0.82 UEF	All	\$740
	Heat Pump Water Heater, electric house, 50 gal, 2.0 EF	2-3	\$1,331
	Ventilation, gas house	4-7	\$3,206
	Ventilation, electric house	3-5	\$3,109
	Ventilation, electric house with improved air tightness	2	\$4,591
	Duct, slab house, buried ducts in attic	2-3	\$4,125
	Duct, slab house, buried ducts in attic	4-7	\$1,736
	Duct, vented crawlspace house	3	(\$852)
	Duct, vented crawlspace house	4	(\$193)
*Indiantaa			

*Indicates a code change that was included in the energy modeling analysis for this study (10 total)

Table 7. Incremental Construction Cost for 2021 Reference House, weighted averages

	National	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Average	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
Total without additional efficiency package options	\$5,477	\$2,648	\$4,326	\$8,550	\$8,695	\$3,685	\$6,618
Total with HVAC option	\$9,301	\$8,369	\$10,047	\$9 <i>,</i> 867	\$10,188	\$5,179	\$8,112
Total with Water Heater option	\$6,548	\$3,979	\$5,657	\$9,290	\$9 , 435	\$4,426	\$7,358
Total with Ventilation option	\$9,011	\$7,238	\$7,435	\$11,755	\$11,900	\$6,891	\$6,618
Total with Duct option, slab house	\$8,550	\$6,773	\$8,451	\$10,286	\$10,431	\$5,421	\$8,354
Total with Duct option, vented crawlspace house			\$3,474	\$8,356			

Table 8. Potential Additional Cost of Individual Code Change for the Reference House

Proposal	Description	Affected CZ	Reference House
RE47	Attic pull-down stair: adds exception to insulation requirements	2-3	(\$90)
	Same	4	(\$119)
RE49	Baffles at tray ceiling (example)	2-3	\$183
	Same	4-7	\$231
RE52	Walls: removes exception for reduced c.i. at WSP	3-7	\$640-\$2,652
RE55	Adds requirements for unconditioned basements	4-5	\$59
RE109	Floor insulation for ducts in conditioned space: min R19	2	\$87
RE134	Adds min efficacy for air handlers if integrated w/ventilation	All	\$1,222

Energy Use Costs and Savings

The modeling results for annual energy use costs are shown in Table 9. The estimated energy savings, as a percentage of energy use costs, are shown in Table 10. The values shown in Table 9 and Table 10 are weighted averages; energy use details are provided in Appendix E.

Cost Effectiveness

The construction costs (Table 7) and annual energy use costs (Table 9) provide the basis to calculate simple paybacks, shown in Table 11.

Table 5. Annual Energy ose cost for Reference house, weighted averages									
	National	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7		
Configuration	Average	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth		
2018 baseline, all houses	\$2,129	\$2,224	\$2,027	\$1,934	\$2,280	\$2,388	\$2,599		
slab houses only	\$2,074	\$2,224	\$2,024	\$1,807	\$2,156	\$2,221	\$2,735		
vented crawl houses only			\$1,959	\$1,826					
2021 without additional efficiency package options	\$2,016	\$2,163	\$1,890	\$1,797	\$2,137	\$2,310	\$2,514		
2021 with HVAC option	\$1,882	\$2,045	\$1,768	\$1,680	\$1,959	\$2,113	\$2,266		
2021 with Water Heater option	\$1,922	\$2,028	\$1,741	\$1,761	\$2,106	\$2,283	\$2,505		
2021 with Ventilation option	\$1,994	\$2,144	\$1,876	\$1,778	\$2,104	\$2,251	\$2,495		
2021 with Duct option, slab house	\$1,851	\$2,046	\$1,789	\$1,585	\$1,889	\$1,985	\$2,418		
2021 with Duct option, vented crawlspace house			\$1,845	\$1,644					

Table 9. Annual Energy Use Cost for Reference House, weighted averages

Table 10. Energy Cost Savings relative to 2018 Baseline Reference House

	National	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Average	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
2021 without additional efficiency package options	5.3%	2.7%	6.8%	7.1%	6.3%	3.3%	3.3%
2021 with HVAC option	11.6%	8.0%	12.8%	13.1%	14.1%	11.5%	12.8%
2021 with Water Heater option	9.7%	8.8%	14.1%	8.9%	7.7%	4.4%	3.6%
2021 with Ventilation option	6.4%	3.6%	7.5%	8.1%	7.7%	5.7%	na
2021 with Duct option, slab house	10.7%	8.0%	11.6%	12.3%	12.4%	10.6%	11.6%
2021 with Duct option, vented crawlspace house			5.8%	10.0%			

	National	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Average	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
2021 without additional efficiency package options	48	43	31	62	61	47	78
2021 with HVAC option	38	47	39	39	32	19	24
2021 with Water Heater option	32	20	20	54	54	42	79
2021 with Ventilation option	67	90	49	75	68	50	63
2021 with Duct option, slab house	38	38	36	46	39	23	26
2021 with Duct option, vented crawlspace house	- - - -		30	46		· · ·	

Table 11. Simple Payback relative to 2018 Baseline Reference House, years

As mentioned in the Methodology section, houses were evaluated based on using either natural gas or electricity as the fuel for heating and hot water: electric in CZ 2-3; gas in CZ 4-7. To illustrate the difference in energy savings for comparison purposes by way of an example, houses in CZ 3 were also modeled using gas, and sample results are shown in Table 12. For houses with the water heater option, the energy savings decreased from 14.1% for electric houses (from Table 10) to 9.9% for gas houses, with a weighted average of 12.2%; the national average energy savings decreased from 9.7% (from Table 10) to 9.3%.

Table 12. Example Comparison of Gas vs. Electric Energy Cost Savings relative to 2018 baseline

		National		
Configuration	Electric	Gas	Weighted Ave*	Average
2021 without additional efficiency package options	6.8%	7.6%	7.1%	5.5%
2021 with Water Heater option	14.1%	9.9%	12.2%	9.3%

*Weighted average based on 55% electric houses and 45% gas houses, adapted from ABPS

Cost Effectiveness of Selected Code Changes

Individual code changes were selected for evaluation. The results are shown by applicable climate zone for thermal envelope changes in Tables 13 through 16, the required HRV in CZ 7 in Table 17, and the additional efficiency package options in Tables 18 through 21.

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Component	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
Ceiling insulation	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366
Slab insulation		\$1,988	\$993	\$993		
Wall continuous insulation			\$4,970	\$4,970		
Window U-factor	· · · · · · · · · · · · · · · · · · ·	\$76	\$76			

Table 13. Incremental Construction Cost of Thermal Envelope Changes

Table 14. Annual Energy Use Cost of Thermal Envelope Changes

	CZ 2	CZ 3	CZ 4	CZ 5 (CZ 6	CZ 7
Configuration	Phoenix	Memphis	Baltimore	Chicago He	elena	Duluth
2018 baseline, all houses	\$2,224	\$2,027	\$1,934	\$2,280 \$2	2,388	\$2,599
2018 baseline, slab houses only		\$2,024	\$1,807	\$2,156		
2018 + 2021 ceiling insulation	\$2,216	\$2,016	\$1,925	\$2,268 \$2	2,376	\$2,584
2018 + 2021 slab insulation, slab houses only		\$1,936	\$1,772	\$2,120		
2018 + 2021 wall continuous insulation			\$1,886	\$2,217		
2018 + 2021 window U-factor		\$2,020	\$1,924			

Table 15. Energy Cost Savings of Thermal Envelope Changes relative to 2018 Baseline Reference House

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
2018 + 2021 ceiling insulation	0.3%	0.6%	0.5%	0.5%	0.5%	0.6%
2018 + 2021 slab insulation, slab houses only		4.3%	1.9%	1.7%		
2018 + 2021 wall continuous insulation			2.5%	2.8%	1	
2018 + 2021 window U-factor		0.3%	0.5%			

Table 16. Simple Payback relative to 2018 Baseline Reference House for Thermal Envelope Changes, years

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
2018 + 2021 ceiling insulation	177	122	152	118	105	90
2018 + 2021 slab insulation, slab houses only		23	28	28		
2018 + 2021 wall continuous insulation			103	78		
2018 + 2021 window U-factor		11	7			

Table 17. Cost effectiveness of HRV in CZ 7

	CZ 7
Configuration	Duluth
Incremental cost of HRV	\$3,206
Annual energy cost, 2021* without HRV	\$2,538
Annual energy cost, 2021* with HRV	\$2,514
Energy cost savings for HRV	1.0%
Simple payback, years	131

*Without additional efficiency package options

Table 18. Incremental Construction Cost of Additional Efficiency Package Options

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Component	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
HVAC option	\$5,721	\$5,721	\$1,317	\$1,494	\$1,494	\$1,494
Water heater option	\$1,331	\$1,331	\$740	\$740	\$740	\$740
Ventilation option	\$4,591	\$3,109	\$3,206	\$3,206	\$3,206	
Duct option, slab house	\$4,125	\$4,125	\$1,736	\$1,736	\$1,736	\$1,736
Duct option, vented crawlspace house	i	(\$852)	(\$193)			

Table 19. Annual Energy Use Cost of Additional Efficiency Package Options

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
2021 without additional efficiency package options, all houses	\$2,163	\$1,890	\$1,797	\$2,137	\$2,310	\$2,514
slab houses only	\$2,163	\$1,867	\$1,655	\$1,999	\$2,165	\$2,639
vented crawlspace houses only		\$1,890	\$1,711			
2021 with HVAC option	\$2,045	\$1,768	\$1,680	\$1,959	\$2,113	\$2,266
2021 with Water Heater option	\$2,028	\$1,741	\$1,761	\$2,106	\$2,283	\$2,505
2021 with Ventilation option	\$2,144	\$1,876	\$1,778	\$2,104	\$2,251	\$2,495
2021 with Duct option, slab house	\$2,046	\$1,789	\$1,585	\$1,889	\$1,985	\$2,418
2021 with Duct option, vented crawlspace		\$1,845	\$1,644			

Table 20. Energy Cost Savings of Additional Efficiency Package Options relative to 2021 without packages

	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7
Configuration	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth
HVAC option	5.4%	6.4%	6.5%	8.3%	8.5%	9.9%
Water Heater option	6.2%	7.9%	2.0%	1.5%	1.2%	0.3%
Ventilation option	0.9%	0.7%	1.1%	1.5%	2.6%	0.8%
Duct option, slab house	5.4%	4.2%	4.2%	5.5%	8.3%	8.4%
Duct option, vented crawlspace house		2.4%	3.9%			

	· · · · · · · · · · · · · · · · · · ·							
	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7		
Configuration	Phoenix	Memphis	Baltimore	Chicago	Helena	Duluth		
HVAC option	49	47	11	8	. 8	6		
Water Heater option	10	9	21	24	27	89		
Ventilation option	240	226	167	97	54	0		
Duct option, slab house	35	53	25	16	10	8		
Duct option, vented crawlspace house		0	0					

Table 21. Simple payback of efficiency package options relative to 2021 house without packages, years

CONCLUSIONS

Home Innovation conducted a cost effectiveness analysis of the 2021 IECC code changes for residential construction based on incremental construction costs and energy use costs developed for a Standard Reference House with multiple configurations and in multiple locations.

Key findings are summarized here for the 2021 Reference House relative to the 2018 Baseline Reference House, based on weighted averages within climate zones (foundation type, wall type) and across climates for national averages (based on housing starts):

- The national average incremental construction cost ranges from \$6,548 to \$9,301 depending on the additional efficiency package option selected for compliance.
- Depending on climate zone, the weighted average incremental construction cost may range up to \$11,900.
- The national average energy use cost savings ranges from 6.4% to 11.6% depending on the additional efficiency package option selected for compliance.
- The national average simple payback for complying with the 2021 IECC ranges from 32 years to 67 years.
- The average simple paybacks for selected individual envelope code changes within associated climate zones are 78-103 years for wall continuous insulation, 23-28 years for slab insulation, and 90-177 years for ceiling insulation.
- The average simple payback for the additional efficiency package options within associated climate zones is 6-11 years for natural gas heating and 47-49 years for heat pump heating, 9-10 years for a heat pump water heater in CZ 2-3 relative to a conventional resistance water heater and 21-27 years for a natural gas water heater (except 89 years for a gas water heater in CZ 7), 54-240 years for Ventilation option, 25-53 years for Duct option for slab houses in CZ 2-4 and 8-16 years for Duct option in CZ 5-8.

APPENDIX A: COST OF INDIVIDUAL CODE CHANGES

The estimated construction costs for the selected individual code changes are shown below. Construction costs were developed using RSMeans⁸ 2021 Residential Data. Costs for mechanical equipment were sourced from distributor web sites⁹. Costs associated with testing or documentation provided by an energy rater were estimated based on an internet search of rater web sites. See Appendix B for costs by climate zone.

RE7

Reference Code Section

R202 Defined terms; R404.1 Lighting equipment

Summary of the Code Change:

This code change revised the definition of HIGH EFFICACY LIGHT SOURCES. The new minimum efficacy is 65 lumens per watt for lamps and 45 lumens per watt for luminaires. Previously, the minimum efficacy was 60 lumens per watt for lamps over 40 watts, 50 for lamps over 15 watts to 40 watts, and 40 for lamps 15 watts or less (R202). The code change excludes kitchen appliance lighting fixtures from high efficacy requirements for permanently installed lighting fixtures. (R404.1).

Cost Implication of the Code Change:

This code change should not increase the cost of construction as typical CFL and LED lamps meet or exceed the new efficacy requirements. (See RE 145 for lighting changes that do impact cost.)

⁸ RSMeans, <u>https://www.rsmeans.com/</u>

⁹ Mechanical equipment cost sources include: hvacdirect.com; supplyhouse.com; acwholesalers.com; menards.com

RE18, RE20, RE21

Reference Code Section

R401.3 Certificate

Summary of the Code Change:

This code change requires additional information on the certificate for PV systems (RE18), code edition and compliance path (RE20), and area-weighted average insulation value (RE21).

Cost Implication of the Code Change:

This code change will increase the cost of construction. The analysis is based on an estimate of the additional time required by a rater to collect and add this information to the certificate.

Cos	st to add i	nformation	to the ce	rtificate	!		
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Incremental time for rater	HR				80.00	1	80
Total to Builder							80
Total to Consumer							99

Cost to add information to the cortific

Reference Code Section

Table R402.1.2; Table R402.1.3

Summary of the Code Change:

This code change increases the prescriptive R-value of continuous insulation (c.i.) on frame walls in CZ 4-5 from "R20 or 13+5" to "R20+5 or 13+10 or 0+15".

Cost Implication of the Code Change:

This code change will increase the cost of construction for frame walls in CZ 4-5. The analysis is based on the cost to increase c.i. from R5 to R10 for 2x4 walls and from none to R5 for 2x6 walls. The costs include associated additional trim at windows and doors and longer fasteners for cladding based on vinyl siding. A weighted average cost is then determined based on market data for walls (per the 2019 ABPS), as shown below.

Weighted Average Cost to Increase Continuous Insulation (c.i.)

Component	Unit	Cost, from below	Weight	Cost, weighted
2x4 wall, increase c.i. from R5 to R10	\$/house	1,101	24.9%	274
2x6 wall, increase c.i. from R0 to R5	\$/house	6,504	72.2%	4,696
Total to Consumer				4,970

Cost to increase c.i. from R5 to R10 for 2x4 wall

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	(2,675)	(3,986)
XPS, 15 psi, 2", R10	SF	0.83	0.49	1.32	1.72	2,675	4,601
Window/door casing, PVC trim exterior	LF	0.55		0.55	0.61	415	251
Siding attachment, 2.5" roofing nail galv	LB	3.06		3.06	3.37	(21)	(71)
Siding attachment, 3.5" common nail galv	LB	1.78		1.78	1.96	49	96
Total to Builder							892
Total to Consumer				: 1			1,101

Cost to increase c.i. from none to R5 for 2x6 wall

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	2,675	3,986
Door/window casing, PVC trim exterior	LF	0.55	1.47	2.02	3.03	415	1,258
Siding attachment, 1.5" roofing nail galv	LB	2.78		2.78	3.06	(13.0)	(40)
Siding attachment, 2.5" roofing nail galv	LB	2.78		2.78	3.06	21.0	64
Total to Builder							5,268
Total to Consumer							6,504

Reference Code Section

Table R402.1.2, Table R402.1.3

Summary of the Code Change:

This code change increases the slab edge insulation requirements in CZ 3 from none to R10/2 (R10, 2feet deep) and in CZ 4-5 from 10/2 to 10/4 (R10, 4-feet deep).

Cost Implication of the Code Change:

This code change will increase the cost of construction for slab homes in CZ 3-5. The analysis is based on the cost to install this insulation at the Reference House with a foundation perimeter of 200 linear feet, so the quantity of insulation 2-feet deep is 400 square feet. Note that the incremental quantity and cost of insulation is assumed to be the same for CZ 3 and CZ 4-5; however, for CZ 3, the cost of flashing at the top edge of the insulation is included.

Cost of additional slab edge insulation, CZ 3											
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost				
XPS, 25 psi, 2" thick, R-10	SF	1.23	0.40	1.63	2.01	400	804				
Flashing, vinyl coated aluminum	SF	1.92	1.17	3.09	4.03	200	806				
Total to Builder							1,610				
Total to Consumer		· · · · · · · · · · · · · · · · · · ·					1,988				

Cost of additional slab edge insulation, CZ 4-5

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 25 psi, 2" thick, R-10	SF	1.23	0.40	1.63	2.01	400	804
Total to Builder							804
Total to Consumer							993

RE33, RE36

Reference Code Section

Table R402.1.2, Table R402.1.3, R402.2.1

Summary of the Code Change:

These code changes increase ceiling insulation from R38 to R39 in CZ 2-3 (RE33) and from R49 to R60 in CZ 4-8 (RE36). The code change also updates the exception for ceiling insulation above wall top plates at eaves to include where R60 is now required.

Cost Implication of the Code Change:

This code change will increase the cost of construction in CZ 2-8. The analysis is based on the incremental cost of blown fiberglass insulation in a vented attic. The incremental cost is assumed to be the same for both changes. The analysis does not address any potential costs associated with raised-heel trusses.

Component	Unit	Material	Labor	Equip	Total	w/O&P	Quantity	Cost
R-38 attic insulation, blown fg	SF	0.69	0.61	0.36	1.66	2.14	(1,875)	(4,013)
R-49 attic insulation, blown fg	SF	0.91	0.76	0.45	2.12	2.73	1,875	5,119
Total to Builder							· •	1,106
Total to Consumer				: 				1,366

Cost to Increase ceiling insulation from R-38 to R-49 or from R-49 to R-60

Reference Code Section

Table R402.1.3

Summary of the Code Change:

This code change removed the footnote "g" exception for reduced insulation in floors for CZ 5 and Marine 4 through CZ 8. The deleted exception alternatively allowed insulation sufficient to fill the framing cavity providing not less than an R-value of R-19, instead of the prescribed values of R30 (CZ 5-6 and Marine 4) or R38 (CZ 7-8). Note that the prescribed floor insulation values did not change for 2021.

Cost Implication of the Code Change:

This code change may increase the cost of construction in some cases (e.g., installing spray foam insulation with a higher R-value per inch, or installing taller floor joists to accommodate sufficient insulation, may now be required to meet prescriptive floor insulation values), but there is no cost impact for the Reference House because the Reference House does not have floors above unconditioned space.

Reference Code Section

Table 402.1.2 and Table R402.1.3

Summary of the Code Change:

This code change reduces the prescriptive maximum U-factor for windows in CZ 3-4 from 0.32 to 0.30. The change also adds a footnote that a maximum window U-factor of 0.32 shall apply in CZ 5/Marine 4 through CZ 8 for buildings located above 4,000 feet in elevation above sea level or in windborne debris regions where protection of openings is required.

Cost Implication of the Code Change:

This code change will increase the cost of construction in CZ 3-4. The analysis is based on an incremental material cost of \$0.15/SF for improving window U-factor from 0.32 to 0.30 as determined by the California Energy Commission¹⁰.

The Department of Energy and EPA Energy Star along with those involved in the development of energy codes have traditionally had problems developing a clear incremental cost for changes in window thermal performance. An earlier report based on cost data collected by the U.S. Department of Energy indicated an incremental cost of \$0.18/SF window area for improving U-value from 0.35 to 0.32¹¹. In this analysis, prices used to develop the incremental cost associated with the code change are a best guess based on the available data.

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Incremental cost of window	SF	0.15		0.15	0.17	375	62
Total to Builder			:			;	62
Total to Consumer							76

Cost to reduce the window U-factor from 0.32 to 0.30

¹⁰ CEC report, see table 9: <u>https://efiling.energy.ca.gov/GetDocument.aspx?tn=222199&DocumentContentId=27369</u>

¹¹ <u>https://www.energycodes.gov/sites/default/files/documents/iecc2018_R-2_analysis_final.pdf</u>

Reference Code Section

Table 402.1.2 and Table R402.1.3

Summary of the Code Change:

This code change changes the window SHGC in CZ 5 and CZ 4C Marine from "NR" to "0.40".

Cost Implication of the Code Change:

It is anticipated that this change will not affect the cost of construction because windows in these climate zones commonly meet the new requirement already. Energy Star criteria include maximum 0.40 SHGC in "North-Central" climates since 2015. Further, energy modeling typically assigns a value of 0.40 where SHGC is NR.

Reference Code Section

R402.5 Maximum fenestration U-factor and SHGC

Summary of the Code Change:

This code change reduces the average maximum fenestration SHGC permitted using tradeoffs in CZ 0-3 from 0.50 to 0.40.

Cost Implication of the Code Change:

It is anticipated that this change will not affect the cost of construction because windows in these climate zones commonly meet the new requirement already. Energy Star criteria include maximum 0.25 SHGC in "South-Central" and "Southern" climates since 2015.

Reference Code Section

R402.2.4 Access hatches and doors

Summary of the Code Change:

This code change does not add new requirements; rather, it separates the prescriptive (required insulation levels) and mandatory (weatherstripping) provisions into separate sections.

Cost Implication of the Code Change:

This code change does not directly impact the cost of construction. However, additional insulation is required due to increased prescriptive ceiling insulation requirements. The analysis is based on the cost to install an additional R-11 insulation above a 24" x 36" attic access hatch.

Component	Unit	Material			w/O&P	Quantity	Cost
EPS, 3" thick, R-11.5	SF	0.96	0.40	1.36	1.72	6	10
Total to Builder							10
Total to Consumer							13

Cost to increase the insulation above an attic access by R-11

Reference Code Section

R402.2.4 Access hatches and doors

Summary of the Code Change:

This code change adds an exception to the attic access insulation requirement. Attic pull-down stairs in CZ 0-4 are not required to comply with the insulation level of the surrounding surfaces provided that the hatch meets all the following: average maximum U-0.10 insulation or average minimum R-10 insulation; at least 75% of the panel area shall be minimum R-13 insulation; maximum net area of the framed opening is 13.5 SF; the perimeter of the hatch shall be weatherstripped.

Cost Implication of the Code Change:

This code change may decrease construction costs where pull-down attic stairs are utilized in CZ 0-4. The analysis is based on the cost savings of less insulation above the access: for this study, R13 versus R49 in CZ 2-3, and R13 versus R60 in CZ 4.

		•				.0,	
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1", R5 (one 1" layer)	SF	0.68	0.45	1.13	1.49	13.5	20
XPS, 15 psi, 2", R10 (one 2" layer)	SF	0.83	0.49	1.32	1.72	13.5	23
XPS, 15 psi, 2", R10 (five 2" layers)	SF	0.83	0.49	1.32	1.72	(67.5)	(116)
Total to Builder							(73)
Total to Consumer						 	(90)
Total to consumer							(30)

Cost savings to reduce insulation above attic pull-down stair for CZ 2-3 (R49 ceiling)

Cost	t savings to	o reduce insul	ation	abovea	attic	pull-do	wn stair for	CZ 4 (R60	ceiling)
								CONTRACTOR OF STREET	and the second first second
~								1000	

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1", R5 (one 1" layer)	SF	0.68	0.45	1.13	1.49	13.5	20
XPS, 15 psi, 2", R10 (one 2" layer)	SF	0.83	0.49	1.32	1.72	13.5	23
XPS, 15 psi, 2", R10 (six 2" layers)	SF	0.83	0.49	1.32	1.72	(81.0)	(139)
Total to Builder		.,.,					(96)
Total to Consumer							(119)

Reference Code Section

R402.2.4 Access hatches and doors

Summary of the Code Change:

This code change adds a requirement for baffles to prevent loose-fill attic insulation from spilling into higher to lower sections of the attic, and from attics covering conditioned spaces to unconditioned spaces. Baffles at the attic access to prevent spilling into livings space are still required (although those must be taller now).

Cost Implication of the Code Change:

This code change will increase the cost of construction for the attic access hatch. This code change may increase the cost of construction where ceiling height varies or attics above unconditioned spaces.

The analysis develops an incremental cost to construct a taller baffle (by 4") for a 24" x 36" attic access hatch for all CZs. The analysis also develops a cost to install baffles for a hypothetical tray ceiling (est. 48 LF): for blown fiberglass insulation at R-3.2/inch, the baffles would need to be 16" tall plus a 3" nailing surface for CZ 2-3 and 19" tall plus a 3" nailing surface for CZ 4-7.

Cost to increase the neight of insulation battles at attic access hatch												
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost					
Plywood, 3/4" CDX	SF	1.38	0.60	1.98	2.50	4	10					
Total to Builder							10					
Total to Consumer							12					

Cost to increase the height of insulation baffles at attic access hatch

Cost to add baffles at tray ceiling (est. 48 LF) for CZ 2-3											
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost				
Plywood, 1/2" CDX	SF	1.00	0.52	1.52	1.95	76	148				
Total to Builder				l 			148				
Total to Consumer							183				

Cost to add baffles at tray ceiling (est. 48 LF) for CZ 4-8

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Plywood, 1/2" CDX	SF	1.00	0.52	1.52	1.95	96	187
Total to Builder							187
Total to Consumer							231

Reference Code Section

Deleted 2018 IECC R402.2.7 Walls with partial structural sheathing

Summary of the Code Change:

This code change deleted a section that allowed continuous insulation (c.i.) to be reduced, where c.i. is required and structural sheathing covers 40 percent or less of the gross wall area of all exterior walls, to result in a consistent total sheathing thickness on areas of the walls covered by structural sheathing.

Cost Implication of the Code Change:

This code change would increase the cost of construction in CZ 3-8 where the exception was utilized. The analysis is based on the additional cost to increase the foam sheathing thickness to 1-1/2-inch where it was 1-inch before, and to 1-inch where it was ½-inch before over the structural sheathing. A second cost is developed separately based on the additional cost to install ½-inch structural sheathing over the entire wall area and 1-inch thick foam sheathing over the structural sheathing. Both costs are based on using XPS foam sheathing and the assumption that wood structural sheathing originally covered 40% of the wall area (1,070 SF) and the remaining 60% of the wall area (1,605 SF) was originally covered by foam only (i.e., not by wood structural sheathing).

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost			
XPS, 15 psi, 1/2", R3	SF	0.60	0.43	1.03	1.37	(1,070)	(1,465)			
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	1,070	1,594			
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	(1,605)	(2,391)			
XPS, 15 psi, 1.5", R7.5	SF	0.76	0.49	1.25	1.64	1,605	2,639			
Window/door casing, add 1/2"	LF	0.23		0.28	0.31	415	128			
Siding attachment, 2" roofing nail galv	LB	3.06		3.06	3.37	(17)	(57)			
Siding attachment, 2.5" roofing nail galv	LB	3.06		3.06	3.37	21	71			
Total to Builder	1						518			
Total to Consumer							640			

Cost to install additional 1/2-inch thickness of continuous insulation

Cost to install OSB over entire wall and cover with 1-inch XPS

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1/2", R3	SF	0.60	0.43	1.03	1.37	(1,070)	(1,465)
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	1,070	1,594
OSB, wall, 1/2"	SF	0.41	0.44	0.85	1.17	1,605	1,878
Window/door casing, add 1/2"	LF	0.23		0.28	0.31	415	128
Siding attachment, 2" roofing nail galv	LB	3.06		3.06	3.37	(17)	(57)
Siding attachment, 2.5" roofing nail galv	LB	3.06		3.06	3.37	21	71
Total to Builder							2,148
Total to Consumer		· ;					2,652

Reference Code Section

R402.2.8 Basement walls

Summary of the Code Change:

This code change adds requirements for how to insulate and seal unconditioned basements including at the floor overhead, walls surrounding the stairway, door leading to the basement from conditioned space; the requirements also include no uninsulated duct, domestic hot water or hydronic heating surfaces exposed to the basement, and no HVAC supply or return diffusers serving the basement.

Cost Implication of the Code Change:

This code change will increase the cost of construction where insulation requirements are greater for 2021, i.e., increased continuous insulation (c.i.) for exterior walls in CZ 4-5 for this analysis. The analysis develops a cost to increase c.i. in the walls surrounding the stairway. This analysis assumes that builders were already constructing unconditioned basements as described by the code change.

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
XPS, 15 psi, 1", R5	SF	0.68	0.45	1.13	1.49	(200)	(298)
XPS, 15 psi, 2", R10	SF	0.83	0.49	1.32	1.72	200	344
Drywall screw, 2.5"	LB	5.98		5.98	6.58	(1.3)	(9)
Drywall screw, 3.5"	LB	5.98		5.98	6.58	1.6	10
Total to Builder							48
Total to Consumer							59

Cost to increase wall insulation in the stairway

Reference Code Section

Table R402.4.1.1 Air barrier, air sealing and insulation installation

Summary of the Code Change:

This code change adds a new requirement that "narrow cavities of an inch or less that are not able to be insulated shall be air sealed".

Cost Implication of the Code Change:

This code change may increase the cost of construction as applicable. The analysis is based on an estimated quantity of small cavities that would require the installation of sealant.

Component	Unit	Material		Total	w/O&P	Quantity	Cost
Sealant, latex acrylic, 3/4" x 1" bead	LF	1.28	1.28	2.56	3.51	36	126
Total to Builder		:					126
Total to Consumer	: 					i	156

Cost to install additional sealant for narrow framing cavities

Reference Code Section

Table R402.4.1.1 Air barrier, air sealing and insulation installation

Summary of the Code Change:

This code change adds a new requirement to air seal the rim board at the sill plate and subfloor. Rim areas in vented crawl spaces and attics are exempt.

Cost Implication of the Code Change:

This code change will increase the cost of construction. The analysis is based on the linear feet of sealant required for the Reference House designs with a foundation perimeter of 200 LF and a second story perimeter of 100 LF. For basement and unvented crawlspace designs, the quantity of sealant is 600 LF (300 LF of rim area, multiplied by two to capture the sealant required at both the sill plate and subfloor). For slab and vented crawlspace designs, the quantity of sealant is 200 LF (100 LF of rim area for the second floor).

	-				 A second second 	•	
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Sealant, latex acrylic, 1/4" x 1/4" bead	LF	0.10	0.96	1.06	1.69	600	1,014
Total to Builder							1,014
Total to Consumer							1,252

Cost to install sealant at rim joists for basement or unvented crawlspace designs

Cost to install sealant at rim joists for slab or vented crawlspace designs

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Sealant, latex acrylic, 1/4" x 1/4" bead	LF	0.10	0.96	1.06	1.69	200	338
Total to Builder					1 - - 		338
Total to Consumer							417

Reference Code Section

R402.4.1.2 Testing

Summary of the Code Change:

This code change makes house air tightness prescriptive and allows a trade-off option up to 5.0 ACH50 or 0.28 CFM/SF enclosure area (0.30 CFM/SF exception for attached dwellings and dwellings 1,500 SF or smaller). The prescriptive limits remain the same: 5.0 ACH50 in CZ 1-2; 3.0 ACH50 in CZ 3-8.

Cost Implication of the Code Change:

This code change may decrease construction costs in some cases where a builder trades-off air leakage for other efficiency improvements for a house in CZ 3-8, but there is assumed to be no cost impact for the Reference House because there is not a straightforward approach to reasonably quantify such a change.

Reference Code Section

R402.4.6 Electrical and communication outlet boxes (air-sealed boxes)

Summary of the Code Change:

This code change adds a new section that requires electrical and communication outlet boxes installed in the building thermal envelope (i.e., exterior walls and ceilings adjacent to vented attics) to be air sealed. These outlet boxes must be tested and labeled in accordance with NEMA OS 4.

Cost Implication of the Code Change:

This code change will increase the cost of construction for all locations. The analysis is based on the cost to substitute a rated airtight box for a standard blue plastic new-work electrical box, using an estimated quantity of affected boxes for the Reference House.

Unit	Material	Labor	Total	w/O&P	Quantity*	Cost		
EA	0.34		0.34	0.37	(42)	(16)		
EA	5.52		5.52	6.07	42	255		
EA	1.19		1.19	1.31	(10)	(13)		
EA	6.60		6.60	7.26	10	73		
						2 99		
			v. 1. 1			369		
	EA EA EA	EA 0.34 EA 5.52 EA 1.19	EA 0.34 EA 5.52 EA 1.19	EA0.340.34EA5.525.52EA1.191.19	EA0.340.340.37EA5.525.526.07EA1.191.191.31	EA0.340.340.37(42)EA5.525.526.0742EA1.191.191.31(10)		

Cost of air sealed electrical and communication outlet boxes

*Estimated quantity of affected boxes

Box type	C	Quantity
Wall receptacle outlet (one every 10 LF of exterior wall)		30
Wall switch outlet		6
Wall communication outlet		6
Ceiling light fixture/smoke detector		10

Reference Code Section

R403.1.1 Programmable thermostat

Summary of the Code Change:

This code change modifies the required capabilities for programmable thermostats: in addition to being capable of controlling different set point temperatures at different times of the day, thermostats must now be capable of controlling this for different days of the week (i.e., a 7-day thermostat, versus a 5-2 day or 5-1-1 day).

Cost Implication of the Code Change:

This code change may increase the cost of construction in some cases, depending on the make and model of thermostat normally used, but a review of distributor websites indicated the lowest cost programmable thermostat by a leading national manufacturer already has 7-day capability for single-stage heat pump or gas furnace with air conditioner systems. Therefore, this code change is not anticipated to affect the cost of construction. There is not an energy use cost savings associated with this change because the energy modeling does utilize thermostat set-back settings.

Reference Code Section

R403.3.2 Ducts located in conditioned space

Summary of the Code Change:

This code change adds requirements for ducts within floor or wall cavities to be considered ducts in conditioned space. The requirements include minimum R-19 insulation for floors above unconditioned space, e.g., above a garage, so there are implications for CZ 1-2 where the prescriptive minimum floor insulation is R-13.

Cost Implication of the Code Change:

This code change may increase the cost of construction in some cases although the Reference House does not have floors above unconditioned space and it is assumed there are no ducts within any wall cavities. The analysis is based on the incremental cost to install R-19 floor insulation instead of R-13 above a garage, assuming ducts occupy two joist bays (each 2' wide x 20' long), and to substitute oval duct for round duct so that the oval duct (typically 3") plus the R-19 insulation (typically 5.5") fits within the height of a 2x10 floor joist.

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
R-13 unfaced fiberglass batt	SF	0.49	0.42	0.91	1.22	(80)	(98)
R-19 unfaced fiberglass batt	SF	0.60	0.49	1.09	1.46	80	117
7" round metal duct	LF	2.00		2.00	2.20	(40)	(88)
7" oval metal duct	LF	3.16		3.16	3.48	40	139
Total to Builder							70
Total to Consumer							87

Cost to increase floor insulation within joist bay from R-13 to R-19

Reference Code Section

R403.3.5 Duct testing, R403.3.6 Duct leakage

Summary of the Code Change:

This code change removes the exception for testing where ducts and air handlers are located entirely within the building thermal envelope (R403.3.5). The code change also increases the total leakage limit from 4.0 to 8.0 CFM25/100SFcfa where ducts and air handlers are located entirely within the building thermal envelope (R403.3.6).

Cost Implication of the Code Change:

This code change will increase the cost of construction where ducts and air handlers are already installed in conditioned space but testing for duct leakage is now required. The analysis is based on a typical charge by a rater to conduct this test during the same visit as the house tightness test. Any cost of remediation for a failed test is not included. For the Reference Houses, it is assumed that this test will now be required for basement and unvented crawlspace designs.

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Charge by rater	EA		1		200.00	1	200
Total to Builder							200
Total to Consumer							247

Estimated cost of the duct leakage test

Reference Code Section

R403.6.3 Testing (new)

Summary of the Code Change:

This code change requires whole-dwelling mechanical ventilation systems to be tested and verified to provide the minimum required ventilation flow rates.

Cost Implication of the Code Change:

This code change will increase the cost of construction for all houses. The analysis is based on a typical charge by a rater to conduct this test during the same visit as the house tightness test. Testing is in addition to duct leakage testing. Testing is now required for the ventilation system of record (e.g., bath exhaust fan, HRV/ERV, supply-type ducted to the return plenum of a central system). Any cost of remediation for a failed test is not included.

Estimated cost of the mechanical ventilation test

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Charge by rater	EA				50.00	1	50
Total to Builder							50
Total to Consumer	: :						62

Reference Code Section

R403.6 Mechanical ventilation, Table R403.6.2

Summary of the Code Change:

This code change updates the fan efficacy requirements for fans used to provide whole-dwelling mechanical ventilation (supply and exhaust fans now must meet the current EnergyStar requirements). The minimum efficacy for an exhaust fan increased from 1.4 to 2.8 CFM/watt for airflow rates less than 90 CFM and from 2.8 to 3.5 CFM/watt for airflow rates 90 CFM and above. The minimum efficacy for an ERV/HRV did not change.

Cost Implication of the Code Change:

This code change may increase the cost of construction in some cases depending on the make and model of fan already being installed. The Reference House uses a bath exhaust fan for whole-dwelling mechanical ventilation and requires a continuous ventilation rate of 63 CFM for slab and crawlspace designs or 82 CFM for basement designs. The analysis is based on the case where an exhaust fan with an efficacy of at least 1.4 CFM/watt but less than 2.8 CFM/watt must be replaced with unit with efficacy of at least 2.8 CFM/watt.

Component	Unit	Material	Labor Total	w/O&P	Quantity	Cost
Bath fan, 90 CFM, 1.8 CFM/W (Air King)	EA	40.15	40.15	44.17	(1)	(44)
Bath fan, 90 CFM, EnergyStar (Air King)	EA	88.43	88.43	97.27	1	97
Total to Builder						53
Total to Consumer				1		66

Incremental cost of high efficacy bath exhaust fan

Reference Code Section

R403.6 Mechanical ventilation, Table R403.6.2

Summary of the Code Change:

This code change adds efficacy requirements to air-handlers where integrated with whole-dwelling mechanical ventilation: minimum 1.2 cfm/watt, the "design outdoor airflow rate/watts of fan used".

Cost Implication of the Code Change:

This code change may increase the cost of construction for integrated supply-type ventilation (ducted to the return plenum of the HVAC system) or balanced ventilation that is partially ducted (HRV or ERV ducting integrated with the HVAC system).

This change does not impact the Reference House that utilizes exhaust ventilation. However, a cost is developed for supply-type ventilation (this cost will also be a component of installing balanced ventilation where an HRV or ERV is integrated with the central duct system). The analysis is based on substituting a variable-speed furnace (constant-airflow ECM air drive) for a multi-speed furnace (constant-torque ECM air drive) to meet the efficacy requirement. During fan-only operation (no heating or cooling), the variable-speed furnace or air handler can be adjusted to operate at 25% of normal heating or cooling airflow, and at this lower airflow system will generally meet the efficacy requirement (although this value is typically not published in the manufacturer product data). Additionally, at this lower airflow, the differential pressure at the return plenum will not be sufficient to draw in the required amount of outdoor air, so an additional ventilation fan will normally be required. The analysis assumes the existing ventilation control is already accounted for.

Component	Unit	Material Labor	Total	w/O&P	Quantity	Cost			
Gas furnace, 80 AFUE, multi-speed	EA	818.00	818.00	899.80	(1)	(900)			
Gas furnace, 80 AFUE, variable-speed	EA	1323.00	1323.00	1455.30	1	1,455			
Total to Builder					1	556			
Total to Consumer	:					686			

Incremental cost of variable-speed furnace

Cost of both variable-speed furnace and ventilator fan

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Furnace, total to Builder from above			1				556
Ventilator fan with damp e r	EA	293.04	39.90	332.94	388.18	1	388
Ventilation damper	EA	85.99		85.99	94.59	(1)	(95)
15-amp circuit, duplex outlet, 20' 14/2 NM	EA	7.30	23.50	30.80	46.00	1	46
Wire, 14/2, add 20'	LF	0.17	1.37	1.54	2.41	20	48
GFCI 15-amp 1-pole breaker	EA	41.99		41.99	46.19	1	46
Total to Builder							989
Total to Consumer							1,222

Reference Code Section

R403.6.1 Heat or energy recovery ventilation (new)

Summary of the Code Change:

This code change requires an HRV or ERV system in CZ 7-8. The system shall be balanced with a minimum 65% SRE at 32°F at a flow greater than or equal to design airflow.

Note that in the 2021 IRC, Section M1505.4.3, there is a whole-dwelling ventilation rate credit of 30% available for a balanced ventilation system with a ducted supply to each bedroom and to one or more of the following rooms: living room; dining room; kitchen.

Cost Implication of the Code Change:

This code change will increase the cost of construction in CZ 7-8. The analysis develops a cost to install an ERV that meets the efficiency requirements and substitutes a standard bath fan for a high efficacy fan that was used for exhaust-type whole-dwelling ventilation. The cost also includes substituting a variablespeed furnace (constant-airflow ECM air drive) for a multi-speed furnace (constant-torque ECM air drive) to meet the efficacy requirement for air handlers integrated with whole-dwelling mechanical ventilation (RE134); alternatively, the ERV would need to be ducted independently.

Cost to install an ERV										
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost			
Bath fan, 90 CFM, EnergyStar (AirKing)	EA	88.43		88.43	97.27	(1)	(97)			
Bath exhaust fan controller	EA	56.60		56.60	62.26	(1)	(62)			
Bath exhaust fan, standard	EA	28.24		28.24	31.06	1	31			
Gas furnace, 80 AFUE, multi-speed blower	EA	818.00		818.00	899.80	(1)	(900)			
Gas furnace, 80 AFUE, variable-speed blower	EA	1323.00		1323.00	1455.30	1	1,455			
ERV, 100 CFM	EA	991.99		991.99	1091.19	1	1,091			
HRV/ERV controller	EA	82.99		82.99	91.29	1	91			
Installation, labor	HR		39.90	39.90	65.84	2	132			
Installation, material	EA	40.00		40.00	44.00	1	44			
15-amp circuit, duplex outlet, 20' 14/2 NM	EA	7.30	23.50	30.80	46.00	1	46			
Wire, 14/2, add 20'	LF	0.17	1.37	1.54	2.41	20	48			
GFCI 15-amp 1-pole breaker	EA	41.99		41.99	46.19	1	46			
Grille, exhaust (from house)	EA	35.00	14.50	49.50	62.50	1	63			
Duct, flexible insulated, 6" dia	LF	3.81	2.21	6.02	7.85	50	393			
Wall cap, 6" dia duct	EA	54.50	29.00	83.50	108.00	2	216			
Total to Builder							2,597			
Total to Consumer							3,206			

Reference Code Section

R404.1 Lighting equipment; R404.2 Interior lighting controls (new)

Summary of the Code Change:

This code change mandates that all permanently installed lighting fixtures contain only high-efficacy lamps (previously 90%) and have built-in lighting controls (dimmer, occupant sensor, or other control) excluding bathrooms, hallways, exterior lighting fixtures, lighting designed for safety or security.

Cost Implication of the Code Change:

This code change will increase the cost of construction for all houses. The analysis is based on an estimated quantity of high-efficacy lamps and dimmers required at the Reference Houses.

Component	Unit	Material	Labor	Total	w/O&P	Quantity*	Cost			
CFL lamp	EA	1.99		1.99	2.19	4	9			
Incandescent lamp	EA	1.02		1.04	1.12	(4)	(4)			
Dimmer switch, toggle	EA	9.99		9.99	10.99	4	44			
Standard toggle switch	EA	1.99		1.99	2.19	(4)	(9)			
Total to Builder							39			
Total to Consumer							49			
Cost of high-efficacy lamps and dimmer switches (basement or crawl space)										
Cost of high-effi	cacy lamps	and dimme	r switche	s (baser	nent or crav	wl space)				
Cost of high-effi Component	cacy lamps Unit	and dimme Material	r switche Labor	s (baser Total	nent or crav w/O&P	wl space) Quantity*	Cost			
							Cost 9			
Component	Unit	Material		Total	w/O&P	Quantity*				
Component CFL lamp	Unit EA	Material 1.99		Total 1.99	w/O&P 2.19	Quantity* 4	9			
Component CFL lamp Incandescent lamp	Unit EA EA	Material 1.99 1.02		Total 1.99 1.99	w/O&P 2.19 1.12	Quantity* 4 (4)	9 (4)			
Component CFL lamp Incandescent lamp Dimmer switch, toggle	Unit EA EA EA	Material 1.99 1.02 9.99		Total 1.99 1.99 9.99	w/O&P 2.19 1.12 10.99	Quantity* 4 (4) 5	9 (4) 55			

Cost of high-efficacy lamps and dimmer switches (slab)

*Qu	an	til	ties

Room	Lamps	Dimmer
Dining room	6	1
Kitchen	6	1
Breakfast	4	1
Family Room	2	1
Halls	2	0
Baths (3)	10	0
Bedrooms	0	0
Exterior	2	0
Basement or crawlspace	4	1
Total, basement or crawl	36	5
Total, slab	32	4
Additional lamps required	4	

Reference Code Section

R404.1.1 Exterior lighting

Summary of the Code Change:

This code change requires compliance with Section C405.4 of the IECC for connected exterior lighting for Group R-2, R-3, and R-4 buildings.

Cost Implication of the Code Change:

This code change will not impact the cost of construction for homes constructed to the IRC.

Reference Code Section

R404.3 Exterior lighting controls (new)

Summary of the Code Change:

This code change requires automatic controls where permanently installed exterior lighting power exceeds 30 watts.

Cost Implication of the Code Change:

This code change may increase the cost of construction. The analysis assumes two 100-watt equivalent, 18-watt actual, exterior lamps and is based on installing two light-sensing devices.

Component	Unit	Material	Labor Total	w/O&P	Quantity*	Cost
Control, 100-watt rated, screw-in type	EA	9.20	9.20	10.12	2	20
Total to Builder						20
Total to Consumer	· • •					25

Cost of exterior lighting control with light sensor

Reference Code Section

R405.2

Summary of the Code Change:

This code change creates a backstop for the performance path that requires the building thermal envelope greater than or equal to levels of efficiency and solar heat gain coefficients in the 2009 IECC.

Cost Implication of the Code Change:

It is anticipated that this change will not affect the cost of construction.

Reference Code Section

Table R405.4.2

Summary of the Code Change:

This code change updates the mechanical ventilation system type for the standard reference design to match the proposed design when using the performance compliance option.

Cost Implication of the Code Change:

It is anticipated that this change will not affect the cost of construction.

Reference Code Section

R401.2.5 Additional energy efficiency (new); R408 Additional efficiency package options (new)

Summary of the Code Change:

This code change establishes additional requirements appliable to all compliance approaches to achieve additional energy efficiency. Compliance for the prescriptive approach requires installing at least one of the five prescribed efficiency package options:

- Enhanced envelope performance (5% UA and SHGC improvement)
- More efficient HVAC equipment performance (minimum 95 AFUE natural gas furnace and 16 SEER air conditioner, 10 HSPF/16 SEER airs source heat pump, or 3.5 COP ground source heat pump)
- Reduced energy use in service water-heating (minimum 0.82 EF fossil fuel water heater, 2.0 EF electric water heater, or 0.4 solar fraction solar water heating system)
- More efficient duct thermal distribution system (100% of ducts and air handlers located entirely within the building thermal envelope, 100% ductless systems, or 100% duct system located in conditioned space as defined by Section R403.3.2)
- Improved air sealing (max 3.0 ACH50) and efficient ventilation (ERV or HRV: min 75% SRE; max 1.1 CFM/Watt; shall not use recirculation as a defrost strategy; min 50% LRMT for ERV). [For this study, when evaluating this option, the ERV (CZ 2-4) or HRV (CZ 5-7) was modeled in accordance with the 2021 IRC that provides for a ventilation rate credit of 30% where certain criteria are met, and houses in CZ 2 were modeled with a tighter building enclosure (3 ACH50 instead of 5 ACH50)].

Cost Implication of the Code Change:

This code change will increase the cost of construction. The analysis evaluates the costs associated with the additional efficiency package options except for the enhanced envelope option.

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Gas furnace, 80kBtuh, AFUE 80%	EA	761.00		761.00	837.10	(1)	(837)
Gas Chimney Vent, 4" dia.	LF	9.65	8.45	18.10	24.50	(25)	(613)
Gas Chimney Vent, 3" dia. (water heater)	LF	7.95	8.00	15.95	22.00	25	550
Gas furnace, 80kBtuh, AFUE 95%	EA	1,295.00		1,295.00	1,424.50	1	1,425
Vent piping, PVC, 2" dia.	LF	3.05	3.02	6.07	8.30	40	332
2" concentric vent kit	EA	59.95		59.95	65.95	1	66
Condenser, 3 ton, 13 SEER	EA	1,085.00		1,085.00	1,193.50	(1)	(1,194)
Condenser, 3 ton, 16 SEER	EA	1,346.00		1,346.00	1,480.60	1	1,481
Total to Builder	:						1,210
Total to Consumer							1,494

HVAC equipment option for Gas House with baseline 13 SEER AC (CZ 5-7 for this study)

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Total to Builder, from above							1,210
Condenser, 3-ton, 14 SEER	EA	1,215.00	1	1,215.00	1,336.50	(1)	(1,337)
Condenser, 3-ton, 13 SEER	EA	1,085.00		1,085.00	1,193.50	1	1,194
Total to Builder					· ·····		1,067
Total to Consumer							1,317

HVAC equipment option for Gas House adjusted for baseline 14 SEER AC (CZ 2-4 for this study)

HVAC option for Electric House: variable speed inverter heat pump, rated to 7F (CZ 2-4)

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Heat Pump, 8.2 HSPF/14 SEER	EA	1,629.00		1,629.00	1,791.90	(1)	(1,792)
Air Handler, matching	EA	988.00		988.00	1,086.80	(1)	(1,087)
Heat Pump, inverter, minimum 10 HSPF/16 SEER, 7F rated	EA	6,830.00		6,830.00	7,513.00	1	7,513
Total to Builder				-			4,634
Total to Consumer				:			5,721

HVAC option for Electric House: variable speed inverter heat pump, rated to -13F (CZ 5-7)

Component	Unit	Material Labor	Total	w/O&P	Quantity	Cost
Heat Pump, 8.2 HSPF/14 SEER	EA	1,629.00	1,629.00	1,791.90	(1)	(1,792)
Air Handler, matching	EA	988.00	988.00	1,086.80	(1)	(1,087)
Heat Pump, inverter, minimum 10 HSPF/16 SEER, -13F rated	EA	8,652.00	8,652.00	9,517.20	1	9,517
Total to Builder						6,639
Total to Consumer					· · · · · · · · · · · · · · · · · · ·	8,196

Water Heater option for Gas House: Tankless Direct Vent Water Heater

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
40 gal gas water heater, 0.58 UEF	EA	559.00	165.00	724.00	883.52	(1)	(884)
Tankless gas water heater, 0.82 UEF	EA	799.00	174.00	973.00	1,162.17	1	1,162
Concentric vent wall termination kit	EA	90.00		90.00	99.00	1	99
Concentric vent 39" extension	EA	37.59		37.59	41.35	1	41
Gas Chimney Vent, 3" dia. (WH connector)	LF	7.95	8.00	15.95	22.00	(4)	(88)
Gas piping, 1/2"	LF	2.69	5.25	7.94	11.50	(10)	(115)
Gas piping, 1"	LF	3.73	6.25	9.98	14.25	10	143
15-amp circuit, toggle, 40' #14/2 NM	EA	51.00	85.50	136.50	195.00	1	195
GFCI 15-amp, 1-pole breaker	EA	41.99		41.99	46.19	1	46
Total to Builder							600
Total to Consumer							740

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
50 gal electric water heater	EA	419.00		419.00	460.90	(1)	(461)
HPWH, 50 gal, minimum 2.0 EF	EA	1,199.00		1,199.00	1,318.90	1	1,319
Mixing valve	EA	175.00	16.50	191.50	220	1	220
Total to Builder							1,078
Total to Consumer	-						1,331

Water Heater option for Electric House: 50 gal Heat Pump Water Heater (HPWH)

Ven	tilation	Option Gas	House				
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Bath fan, 90 CFM, EnergyStar (AirKing)	ΕA	88.43		88.43	97.27	(1)	(97)
Bath exhaust fan controller	EA	56.60		56.60	62.26	(1)	(62)
Bath exhaust fan, standard	EA	28.24		28.24	31.06	1	31
Gas furnace, 80 AFUE, multi-speed blower	EA	818.00		818.00	899.80	(1)	(900)
Gas furnace, 80 AFUE, variable-speed blower	EA	1323.00		1323.00	1455.30	1	1,455
ERV, 100 CFM	EA	991.99		991.99	1091.19	1	1,091
HRV/ERV controller	EA	82.99		82.99	91.29	1	91
Installation, labor	HR		39.90	39.90	65.84	2	132
Installation, material	EA	40.00	-	40.00	44.00	1	44
15-amp circuit, duplex outlet, 20' 14/2 NM	EA	7.30	23.50	30.80	46.00	1	46
Wire, 14/2, add 20'	LF	0.17	1.37	1.54	2.41	20	48
GFCI 15-amp 1-pole breaker	EA	41.99		41.99	46.19	1	46
Grille, exhaust (from house)	EA	35.00	14.50	49.50	62.50	1	63
Duct, flexible insulated, 6" dia	LF	3.81	2.21	6.02	7.85	50	393
Wall cap, 6" dia duct	EA	54.50	29.00	83.50	108.00	2	216
Total to Builder							2,597
Total to Consumer							3,206

ven.	inution	Option Lie	inc nou	30			
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Bath fan, 90 CFM, EnergyStar (AirKing)	EA	88.43		88.43	97.27	(1)	(97)
Bath exhaust fan controller	EA	56.60		56.60	62.26	(1)	(62)
Bath exhaust fan, standard	EA	28.24		28.24	31.06	1	31
Heat Pump system, multi-speed blower	EA	2394.00	 	2394.00	2633.40	(1)	(2,633)
Heat Pump system, variable-speed	EA	2828.00		2828.00	3110.80	1	3,111
ERV, 100 CFM	EA	991.99		991.99	1091.19	1	1,091
HRV/ERV controller	EA	82.99		82.99	91.29	1	91
Installation, labor	HR		39.90	39.90	65.84	2	132
Installation, material	EA	40.00		40.00	44.00	1	44
15-amp circuit, duplex outlet, 20' 14/2 NM	EA	7.30	23.50	30.80	46.00	1	46
Wire, 14/2, add 20'	LF	0.17	1.37	1.54	2.41	20	48
GFCI 15-amp 1-pole breaker	EA	41.99		41.99	46.19	1	46
Grille, exhaust (from house)	EA	35.00	14.50	49.50	62.50	1	63
Duct, flexible insulated, 6" dia	LF	3.81	2.21	6.02	7.85	50	393
Wall cap, 6" dia duct	EA	54.50	29.00	83.50	108.00	2	216
Total to Builder							2,518
Total to Consumer							3,109

Ventilation Option Electric House

Ventilation Option Electric House in CZ 2

Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost
Associated ERV cost to builder from above							2,518
Improve ACH50 from 5 to 3, estimate		:					1,200
Total to Builder							3,718
Total to Consumer							4,591

Duct Option: Slab House, Buried Ducts, CZ 2-3

Component	Unit	Material	Labor	Equip	Total	w/O&P	Quantity	Cost
R13 duct: add FSK min R5 over R8 duct	SF	0.27	1.70		1.97	3.14	680	2,135
Add ceiling insulation, R49 f.g. blown	SF	0.91	0.76	0.45	2.12	2.73	340	928
Mechanical closet, 3'x4', partition wall	LF	7.40	4.89		12.29	16.15	10	162
Mechanical closet, drywall, finished	SF	0.38	0.61		0.99	1.41	140	197
Mechanical closet door	EA	135.00	34.50		169.50	205.00	1	205
Delete attic platform decking, 3/4, 8'x8'	SF	1.38	0.38		1.76	2.14	(64)	(137)
Delete attic platform joist framing, 2x12	LF	2.53	0.58		3.11	3.73	(40)	(149)
Total to Builder								3,341
Total to Consumer								4,125

Component	Unit	Material	Labor	Equip	Total	w/O&P	Quantity	Cost
Add ceiling insulation, R60 f.g. blown	SF	1.13	0.91	0.54	2.58	3.32	340	1,128
Mechanical closet, 3'x4', partition wall	LF	7.40	4.89		12.29	16.15	10	162
Mechanical closet, drywall, finished	SF	0.38	0.61		0.99	1.41	140	197
Mechanical closet door	EA	135.00	34.50		169.50	205.00	1	205
Delete attic platform decking, 3/4, 8'x8'	SF	1.38	0.38		1.76	2.14	(64)	(137)
Delete attic platform joist framing, 2x12	LF	2.53	0.58		3,11	3.73	(40)	(149)
Total to Builder								1,406
Total to Consumer	1			- -				1,736

Duct Option: Slab House, Buried Ducts, CZ 4-7

Duct Option: Convert Crawlspace from Vented to Unvented, CZ 3

Component	Unit	Material	Labor	Equip	Total	w/O&P	Quantity	Cost
Floor insulation, R19	SF	0.60	0.49		1.09	1.46	(1,875)	(2,738)
Wall insulation, foil-faced polyiso, 1", R6	SF	0.81	0.37		1.18	1.50	1000	1,502
Foundation vents	EA	7.98			7.98	8.78	(6)	(53)
Class 1 vapor retarder on ground	SF	0.08	0.08		0.16	0.22	1875	413
Supply duct, 38 cfm (1 cfm/50sf)	EA				125.00	137.50	1	138
Transfer grille	EA	24.00	13.30		37.30	48.50	1	49
Total to Builder								(690)
Total to Consumer			: 					(852)

Duct Option: Convert Crawlspace from Vented to Unvented, CZ 4

Component	Unit	Material	Labor	Equip	Total	w/O&P	Quantity	Cost
Floor insulation, R19	SF	0.60	0.49		1.09	1.46	(1,875)	(2,738)
Wall insulation, foil-faced polyiso, 2", R12	SF	1.25	0.40		1.65	2.04	1000	2,035
Foundation vents	EA	7.98			7.98	8.78	(6)	(53)
Class 1 vapor retarder on ground	SF	0.08	0.08		0.16	0.22	1875	413
Supply duct, 38 cfm (1 cfm/50sf)	EA				125.00	137.50	1	138
Transfer grille	EA	24.00	13.30		37.30	48.50	1	49
Total to Builder								(157)
Total to Consumer								(193)

CE40.2

Reference Code Section

R303.1.2 Insulation mark installation

Summary of the Code Change:

This code change adds a new requirement for an insulation certificate to certify the installed R-value of insulation products without an observable manufacturer's R-value mark such as blown-in attic insulation. The certificate must be left by the installer immediately after installation in a conspicuous location within the building.

Cost Implication of the Code Change:

This code change may increase the cost of construction. The analysis is based on the estimated additional time for the installer to complete and post the certificate.

Na series and the series of the ser										
Component	Unit	Material	Labor	Total	w/O&P	Quantity	Cost			
Insulation installer	HR		29.23	29.23	48.23	0.25	12			
Total to Builder							12			
Total to Consumer							15			

Cost to provide insulation certificate

CE151.2

Reference Code Section

R202 Defined terms (new); R403.3.1 Ducts located outside conditioned space

Summary of the Code Change:

This code change adds a definition for Thermal Distribution Efficiency (TDE) and requirements for ducts buried underneath buildings.

Cost Implication of the Code Change:

This code change may decrease the cost of construction in some cases, e.g., where ducts are buried beneath buildings, but this change does not impact cost for the Reference House.

APPENDIX B: CONSTRUCTION COST BY CLIMATE ZONE

Incremental Construction Cost of Individual Code Chage for the Reference House CZ 2 Phoenix Mass (30%) Frame (70%) Electric Electric Affected Reference Slah Slab Proposal Description CZ House 100% 100% RE7 Lighting: revised definition of high-efficacy All \$0 RE18/20/21 Certificate: additional info All \$99 \$99 \$99 **RE29** Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6) 4-5 \$4,970 RE32 Slab edge: NR to R10/2 (CZ3) 3 \$1,988 Slab edge: R10/2 to R10/4 (CZ4-5) 4-5 \$993 RE33 Ceiling insulation R38 to R49 2-3 \$1,366 \$1,366 \$1,366 RE36 Ceiling insulation R49 to R60 4-7 \$1,366 RE34 Floors, removes exception for min R19 if fills cavity 5-8 NA Windows: reduces U-value from 0.32 to 0.30 3-4 RE35 \$76 RE37 Windows: changes SHGC form NR to 0.40 5 & 4C \$0 RE105 Windows: reduces max SHGC tradeoff from 0.50 to 0.40 2-3 \$0 RE46 Attic access hatch: no direct cost; cost of additional insulation \$13 \$13 \$13 All RE49 Baffles at attic access \$12 \$12 \$12 All RE72 Air seal narrow framing cavities All \$156 \$156 \$156 **RF82** Air seal rim (basement; unvented crawlspace) All \$1,252 Air seal rim (slab, vented crawlspace) All \$417 \$417 \$417 RE96 House tightness, allows trade-off for performance path All \$0 Air seal electrical & communication outlet boxes \$369 \$369 \$369 RE103 All RE106 Thermostat: requires 7-day programming All \$0 RE112 Removes exception for duct test (basement, unvented crawl) All \$247 \$62 RE130 Adds requirement to test whole-dwelling ventilation All \$62 \$62 RE133 Updates ventilation fan efficacy (affects bath EF) All \$66 \$66 \$66 RE139 Requires ERV/HRV in CZ 7-8 (includes RE134 air handler integration) 7 \$3,206 RE145 Lighting: 100% high-efficacy; controls (slab) All \$49 \$49 \$49 Lighting: 100% high-efficacy; controls (basement, crawl) Ali \$60 **RE148** Lighting, commercial All NA RE149 Lighting: exterior controls \$25 \$25 \$25 All Performance path backstop: 2009 IECC RE151 All NA RE178 Performance path ventilation type to match proposed All NA CE40.2 Insulation certificate if no manufacturer mark (i.e., blown) All \$15 \$15 \$15 CE151.2 Defines duct TDE; adds requirements for underground ducts All NA \$2,648 \$2,648 Sub-total without additional efficiency package options \$2,648 Weighted average, foundations CZ 2 Nat Ave 5,477 2,648 Weighted average without additional efficiency package options HVAC option 5,721 RE209 3,824 Water Heater option 1,071 1,331 RE209 4,591 RE209 Ventilation option 3,570 3,074 4,125 RE209 Duct option, slab houses RE209 Duct option, vented crawlspace houses na 8.369 Total with HVAC option 9,301 3,979 Total with Water Heater option 6,548 Total with Ventilation option 9,047 7,238 6,773 Total with Duct option, slab houses 8,550 Total with Duct option, vented crawlspace houses na

				Memphis						
				Mass Wall (10%) Electric			Fra	ame Wall (90%) Electric		
		Affected	Reference	Slab	Basement	Crawl	Slab	Basement	Crawl	
Proposal	Description	CZ	House	75%	10%	15%	75%	10%	15%	
RE7	Lighting: revised definition of high-efficacy	All	\$0							
• •	Certificate: additional info	All	\$99	\$99	\$99	\$99	\$99	\$99	\$99	
RE29	Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6)	4-5	\$4,970							
RE32	Slab edge: NR to R10/2 (CZ3)	3	\$1,988	\$1,988			\$1,988			
п	Slab edge: R10/2 to R10/4 (CZ4-5)	4-5	\$993							
RE33	Ceiling insulation R38 to R49	2-3	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	
RE36	Ceiling insulation R49 to R60	4-7	\$1,366							
RE34	Floors, removes exception for min R19 if fills cavity	5-8	NA							
RE35	Windows: reduces U-value from 0.32 to 0.30	3-4	\$76	\$76	\$76	\$76	\$76	\$76	\$76	
RE37	Windows: changes SHGC form NR to 0.40	5 & 4C	\$0							
RE105	Windows: reduces max SHGC tradeoff from 0.50 to 0.40	2-3	\$0							
RE46	Attic access hatch: no direct cost; cost of additional insulation	All	\$13	\$13	\$13	\$13	\$13	\$13	\$13	
RE49	Baffles at attic access	All	\$12	\$12	\$12	\$12	\$12	\$12	\$12	
RE72	Air seal narrow framing cavities	All	\$156	\$156	\$156	\$156	\$156	\$156	\$156	
RE82	Air seal rim (basement; unvented crawlspace)	All	\$1,252		\$1,252			\$1,252		
	Air seal rim (slab, vented crawlspace)	All	\$417	\$417		\$417	\$417		\$417	
RE96	House tightness, allows trade-off for performance path	All	\$0							
RE103	Air seal electrical & communication outlet boxes	All	\$369	\$369	\$369	\$369	\$369	\$369	\$369	
RE106	Thermostat: requires 7-day programming	All	\$0							
RE112	Removes exception for duct test (basement, unvented crawl)	All	\$247		\$247			\$247		
RE130	Adds requirement to test whole-dwelling ventilation	Ali	\$62	\$62	\$62	\$62	\$62	\$62	\$62	
RE133	Updates ventilation fan efficacy (affects bath EF)	Ali	\$66	\$66	\$66	\$66	\$66	\$66	\$66	
RE139	Requires ERV/HRV in CZ 7-8 (includes RE134 air handler integration)	7	\$3,206							
RE145	Lighting: 100% high-efficacy; controls (slab)	All	\$49	\$49			\$49			
	Lighting: 100% high-efficacy; controls (basement, crawl)	All	\$60		\$60	\$60		\$60	\$60	
RE148	Lighting, commercial	All	NA							
RE149	Lighting: exterior controls	Al]	\$25	\$25	\$25	\$25	\$25	\$25	\$25	
RE151	Performance path backstop: 2009 IECC	Ali	NA							
RE178	Performance path ventilation type to match proposed	All	NA							
CE40.2	Insulation certificate if no manufacturer mark (i.e., blown)	All	\$15	\$15	\$15	\$15	\$15	\$15	\$15	
CE151.2	Defines duct TDE; adds requirements for underground ducts	All	NA							
	Sub-total without additional efficiency package options			\$4,712	\$3,816	\$2,735	\$4,712	\$3,816	\$2,735	
	Weighted average, foundations					\$4,326			\$4,326	
			Nat Ave			CZ 3				
	Weighted average without additional efficiency package options		5,477			4,32				
RE209	HVAC option		3,824			5,72				
RE209	Water Heater option		1,071			1,33				
RE209	Ventilation option		3,570			3,10				
RE209	Duct option, slab houses		3,074			4,12				
RE209	Duct option, vented crawlspace houses		na			(852				
	Total with HVAC option		9,301			10,04				
	Total with Water Heater option		6,548			5,65				
	Total with Ventilation option		9,047			7,43				
	Total with Duct option, slab houses		8,550			8,45				
	Total with Duct option, vented crawlspace houses		na			3,47	4			

CZ 3

I	Incremental Construction Cost of Individual Code Chage for the Refer	ence House	2		CZ 4 Baltimore Frame Wall Gas	
Proposal	Description	Affected CZ	Reference House	Siab 20%	Basement 60%	Crawi 20%
RE7	Lighting: revised definition of high-efficacy	All	\$0		0270	2070
RE18/20/21		All	\$99	\$99	\$99	\$99
RE29	Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6)	4-5	\$4,970	\$4,970		\$4,970
RE32	Slab edge: NR to R10/2 (CZ3)	3	\$1,988	<i>•</i> • <i>•</i> • •	, , , , , , , , , , , , , , , , , , ,	<i>, ,</i>
н	Slab edge: R10/2 to R10/4 (CZ4-5)	4-5	\$993	\$993		
RE33	Ceiling insulation R38 to R49	2-3	\$1,366	•		
RE36	Ceiling insulation R49 to R60	4-7	\$1,366	\$1,366	\$1,366	\$1,366
RE34	Floors, removes exception for min R19 if fills cavity	5-8	NA	+ -,	<i>, _,</i>	4 -)
RE35	Windows: reduces U-value from 0.32 to 0.30	3-4	\$76	\$76	\$76	\$76
RE37	Windows: changes SHGC form NR to 0.40	5 & 4C	\$0		<i></i>	4, -
RE105	Windows: reduces max SHGC tradeoff from 0.50 to 0.40	2-3	\$0			
RE46	Attic access hatch: no direct cost; cost of additional insulation	All	\$13	\$13	\$13	\$13
RE49	Baffles at attic access	All	\$12	\$12		\$12
RE72	Air seal narrow framing cavities	All	\$156	\$156	-	\$156
RE82	Air seal rim (basement; unvented crawlspace)	All	\$1,252	7	\$1,252	7
"	Air seal rim (slab, vented crawlspace)	All	\$417	\$417	+ =) = = = =	\$417
RE96	House tightness, allows trade-off for performance path	All	\$0	¥ · = /		<i>4</i> · - ·
RE103	Air seal electrical & communication outlet boxes	All	\$369	\$369	\$369	\$369
RE106	Thermostat: requires 7-day programming	All	\$0			7
RE112	Removes exception for duct test (basement, unvented crawl)	All	\$247		\$247	
RE130	Adds requirement to test whole-dwelling ventilation	All	\$62	\$62		\$62
RE133	Updates ventilation fan efficacy (affects bath EF)	All	\$66	\$66		\$66
RE139	Requires ERV/HRV in CZ 7-8 (includes RE134 air handler integration)	7	\$3,206	<i>ç</i> oo	çoo	400
RE145	Lighting: 100% high-efficacy; controls (slab)	All	\$49	\$49		
"	Lighting: 100% high-efficacy; controls (basement, crawl)	All	\$60	Ç i Ç	\$60	\$60
RE148	Lighting, commercial	All	NA		çoo	çõõ
RE149	Lighting: exterior controls	All	\$25	\$25	\$25	\$25
RE151	Performance path backstop: 2009 IECC	All	NA	Ϋ́́	ΨĽIJ	Ϋ́́
RE178	Performance path ventilation type to match proposed	All	NA			
CE40.2	Insulation certificate if no manufacturer mark (i.e., blown)	All	\$15	\$15	\$15	\$15
CE151.2	Defines duct TDE; adds requirements for underground ducts	All	NA	ŶŦĴ	ŶIJ	ŶŦĴ
01131.2	Sub-total without additional efficiency package options	,		\$8,686	\$8,786	\$7,705
	Weighted average, foundations			<i>\$0,000</i>	<i>40,700</i>	\$8,550
			Nat Ave		CZ 4	7 - 7
	Weighted average without additional efficiency package options		5,477		8,550	
RE209	HVAC option		3,824		1,317	
RE209	Water Heater option		1,071		740	
RE209	Ventilation option		3,570		3,206	
RE209	Duct option, slab houses		3,074		1,736	
RE209	Duct option, vented crawlspace houses		na		(193)	
ALLOJ	Total with HVAC option		9,301		9,867	
	Total with Water Heater option		6,548		9,290	
	Total with Ventilation option		9,047		11,755	
	Total with Duct option, slab houses		8,550		10,286	
	Total with Duct option, vented crawlspace houses		na		8,356	
	iotal with butt option, vented trawispate houses		na		0,000	

1	Incremental Construction Cost of Individual Code Chage for the Refer	ence Hous	2			CZ : Chica	-		
					Frame Wali	Chica	ιgο	Frame Wall	
					Gas (60%)		i	Electric (40%)	
		Affected	Reference	Slab	Basement	Crawl	Slab	Basement	Crawl
Proposal	Description	CZ	House	15%	70%	15%	15%	70%	15%
RE7	Lighting: revised definition of high-efficacy	All	\$0						
RE18/20/21	Certificate: additional info	Ali	\$99	\$99	\$99	\$99	\$99	\$99	\$99
RE29	Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6)	4-5	\$4,970	\$4,970	\$4,970	\$4,970	\$4,970	\$4,970	\$4,970
RE32	Slab edge: NR to R10/2 (CZ3)	3	\$1,988						
11	Slab edge: R10/2 to R10/4 (CZ4-5)	4-5	\$993	\$993			\$993		
RE33	Ceiling insulation R38 to R49	2-3	\$1,366						
RE36	Ceiling insulation R49 to R60	4-7	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366
RE34	Floors, removes exception for min R19 if fills cavity	5-8	NA						
RE35	Windows: reduces U-value from 0.32 to 0.30	3-4	\$76						
RE37	Windows: changes SHGC form NR to 0.40	5 & 4C	\$0						
RE105	Windows: reduces max SHGC tradeoff from 0.50 to 0.40	2-3	\$0						
RE46	Attic access hatch: no direct cost; cost of additional insulation	All	\$13	\$13	\$13	\$13	\$13	\$13	\$13
RE49	Baffles at attic access	A[]	\$12	\$12	\$12	\$12	\$12	\$12	\$12
RE72	Air seal narrow framing cavities	All	\$156	\$156	\$156	\$156	\$156	\$156	\$156
RE82	Air seal rim (basement; unvented crawlspace)	All	\$1,252		\$1,252	\$1,252		\$1,252	\$1,252
н	Air seal rim (slab, vented crawlspace)	Ali	\$417	\$417			\$417		
RE96	House tightness, allows trade-off for performance path	All	\$0						
RE103	Air seal electrical & communication outlet boxes	All	\$369	\$369	\$369	\$369	\$369	\$369	\$369
RE106	Thermostat: requires 7-day programming	All	\$0						
RE112	Removes exception for duct test (basement, unvented crawi)	Ali	\$247		\$247	\$247		\$247	\$247
RE130	Adds requirement to test whole-dwelling ventilation	All	\$62	\$62	\$62	\$62	\$62	\$62	\$62
RE133	Updates ventilation fan efficacy (affects bath EF)	Ali	\$66	\$66	\$66	\$66	\$66	\$66	\$66
RE139	Requires ERV/HRV in CZ 7-8 (includes RE134 air handler integration)	7	\$3,206						
RE145	Lighting: 100% high-efficacy; controls (slab)	All	\$49	\$49			\$49		
41	Lighting: 100% high-efficacy; controls (basement, crawl)	All	\$60		\$60	\$60		\$60	\$60
RE148	Lighting, commercial	All	NA						
RE149	Lighting: exterior controls	All	\$25	\$25	\$25	\$25	\$25	\$25	\$25
RE151	Performance path backstop: 2009 IECC	All	NA						
RE178	Performance path ventilation type to match proposed	All	NA						
CE40.2	Insulation certificate if no manufacturer mark (i.e., blown)	All	\$15	\$15	\$15	\$15	\$15	\$15	\$15
CE151.2	Defines duct TDE; adds requirements for underground ducts	Ali	NA						
	Sub-total without additional efficiency package options			\$8,610	\$8,710	\$8,710	\$8,610	\$8,710	\$8,710
	Weighted average, foundations					\$8,695			\$8,695
			Nat Ave		CZ 5 Gas			CZ 5 Electric	
	Weighted average without additional efficiency package options		5,477 📕		8,695			8,695	
RE209	HVAC option		3,824		1,494			8,196	
RE209	Water Heater option		1,071		, 740			2,503	
RE209	Ventilation option		3,570		3,206			3,109	
RE209	Duct option, slab houses		3,074		1,736			1,736	
RE209	Duct option, vented crawlspace houses		na						
	Total with HVAC option		9,301		10,188			16,890	
	Total with Water Heater option		6,548		9,435			11,198	
	Total with Ventilation option		9,047		11,900			11,804	
	Total with Duct option, slab houses		8,550		10,431			10,431	
	Total with Duct option, vented crawlspace houses		na		,			,	

1	Incremental Construction Cost of Individual Code Chage for the Reference House				CZ 6 CZ 7 Helena Duluth Frame Wall Frame Wa Gas Gas				
		Affected	Reference	Slab	Basement	Crawl	Slab	Basement	Crawl
Proposal	Description	CZ	House	5%	90%	5%	30%	5%	65%
RE7	Lighting: revised definition of high-efficacy	A!I	\$0						
	Certificate: additional info	All	\$99	\$99	\$99	\$99	\$99	\$99	\$99
RE29	Frame wall, c.i.: R5 to R10 (2x4); R0 to R5 (2x6)	4-5	\$4,970						
RE32	Slab edge: NR to R10/2 (CZ3)	3	\$1,988						
	Slab edge: R10/2 to R10/4 (CZ4-5)	4-5	\$993						
RE33	Ceiling insulation R38 to R49	2-3	\$1,366						
RE36	Ceiling insulation R49 to R60	4-7	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366	\$1,366
RE34	Floors, removes exception for min R19 if fills cavity	S-8	NA						
RE35	Windows: reduces U-value from 0.32 to 0.30	3-4	\$76						
RE37	Windows: changes SHGC form NR to 0.40	5 & 4C	\$0						
RE105	Windows: reduces max SHGC tradeoff from 0.50 to 0.40	2-3	\$0						
RE46	Attic access hatch: no direct cost; cost of additional insulation	All	\$13	\$13	\$13	\$13	\$13	\$13	\$13
RE49	Baffles at attic access	All	\$12	\$12	\$12	\$12	\$12	\$12	\$12
RE72	Air seal narrow framing cavities	All	\$156	\$156	\$156	\$156	\$156	\$156	\$156
RE82	Air seal rim (basement; unvented crawlspace)	All	\$1,252		\$1,252	\$1,252		\$1,252	\$1,252
11	Air seal rim (slab, vented crawlspace)	All	\$417	\$417			\$417		
RE96	House tightness, allows trade-off for performance path	All	\$0						
RE103	Air seal electrical & communication outlet boxes	All	\$369	\$369	\$369	\$369	\$369	\$369	\$369
RE106	Thermostat: requires 7-day programming	All	\$0						
RE112	Removes exception for duct test (basement, unvented crawl)	All	\$247		\$247	\$247		\$247	\$247
RE130	Adds requirement to test whole-dwelling ventilation	All	\$62	\$62	\$62	\$62	\$62	\$62	\$62
RE133	Updates ventilation fan efficacy (affects bath EF)	All	\$66	\$66	\$66	\$66	\$66	\$66	\$66
RE139	Requires ERV/HRV in CZ 7-8 (includes RE134 air handler integration)	7	\$3,206				\$3,206	\$3,206	\$3,206
RE145	Lighting: 100% high-efficacy; controls (slab)	All	\$49	\$49			\$49		. ,
**	Lighting: 100% high-efficacy; controls (basement, crawl)	All	\$60		\$60	\$60		\$60	\$60
RE148	Lighting, commercial	All	NA						
RE149	Lighting: exterior controls	All	\$25	\$25	\$25	\$25	\$25	\$25	\$25
RE151	Performance path backstop: 2009 IECC	All	NA				,	,	,
RE178	Performance path ventilation type to match proposed	All	NA						
CE40.2	Insulation certificate if no manufacturer mark (i.e., blown)	All	\$15	\$15	\$15	\$15	\$15	\$15	\$15
CE151.2	Defines duct TDE; adds requirements for underground ducts	All	NA	•			+	+	\$ =0
	Sub-total without additional efficiency package options			\$2,648	\$3,740	\$3,740	\$5,853	\$6,946	\$6,946
	Weighted average, foundations			• •		\$3,685		+ =)=	\$6,618
			Nat Ave		CZ 6			CZ 7	
	Weighted average without additional efficiency package options		5,477		3,685			6,618	
RE209	HVAC option		3,824		1,494			1,494	
RE209	Water Heater option		1,071		, 740			740	
	Ventilation option		3,570		3,206			0	
RE209	Duct option, slab houses		3,074		1,736			1,736	
	Duct option, vented crawispace houses		na		_,			-,, 50	
	Total with HVAC option		9,301		5,179			8,112	
	Total with Water Heater option		6,548		4,426			7,358	
	Total with Ventilation option		9,047		6,891			7,338 6,618	
	Total with Duct option, slab houses		8,550		5,421			8,354	
	Total with Duct option, vented crawlspace houses		na 8,550		5,421			40,004	
			116						

APPENDIX C: LOCATION ADJUSTMENT FACTORS

Factor	Factor
Alabama Birmingham 0.84 Montana Billings	0.89
Alabama Mobile 0.83 Nebraska Omaha	0.90
Alaska Fairbanks 1.21 Nevada Las Vegas	1.03
Arizona Phoenix 0.84 New Hampshire Portsmouth	0.95
Arizona Tucson 0.84 New Jersey Jersey City	1.18
Arkansas Little Rock 0.83 New Mexico Albuquerque	0.86
California Alhambra 1.15 New York Long Island Cit y	1.36
California Los Angeles 1.15 New York Syracuse	0.99
California Riverside 1.13 North Carolina Charlotte	0.99
California Stockton 1.20 North Carolina Hickory	0.93
Colorado Boulder 0.90 North Carolina Raleigh	0.94
Colorado Colorado Springs 0.87 North Dakota Fargo	0.87
Colorado Denver 0.91 Ohio Columbus	0.91
Connecticut New Haven 1.10 Oklahoma Oklahoma City	0.84
Delaware Dover 1.02 Oklahoma Tulsa	0.83
District of Washington, D.C. 0.92 Oregon Bend	1.02
Florida Fort Meyers 0.79 Pennsylvania Norristown	1.05
Florida Miami 0.83 Pennsylvania State College	0.94
Florida Orlando 0.82 Rhode Island Providence	1.09
Florida Tampa 0.81 South Carolina Greenville	0.97
Georgia Atlanta 0.90 South Dakota Sioux Falls	0.92
Hawaii Honolulu 1.22 Tennessee Memphis	0.87
Idaho Boise 0.89 Texas Austin	0.80
Illinois Chicago 1.25 Texas Dallas	0.84
Indiana Indianapolis 0.92 Texas Houston	0.84
Iowa Des Moines 0.92 Texas San Antonio	0.83
Kansas Wichita 0.81 Utah Ogden	0.84
Kentucky Louisville 0.89 Utah Provo	0.85
Louisiana Baton Rouge 0.85 Utah Salt Lake City	0.85
Maine Portland 0.94 Vermont Burlington	0.95
Maryland Baltimore 0.93 Virginia Fairfax	1.00
Massachusetts Boston 1.18 Virginia Winchester	0.99
Michigan Ann Arbor 0.99 Washington Tacoma	1.05
Minnesota Minneapolis 1.09 West Virginia Charleston	0.94
Mississippi Biloxi 0.83 Wisconsin La Crosse	0.95
Missouri Springfield 0.86 Wyoming Casper	0.85

*Source: RSMeans Residential Cost Data 2021. Sample cities are listed in this table; check RSMeans for additional locations.

APPENDIX D: 2021 IECC INSULATION AND FENESTRATION CHANGES

The table below shows the insulation and fenestration requirements for the 2018 IECC and 2021 IECC. For comparison purposes, the 2021 IECC values are shown only where those have been changed from the 2018 values.

	CZ	2	CZ	23	CZ 4 ex	cept 4C	CZ 5 a	nd 4C	CZ	6	CZ	7
	Pho	enix	Men	nphis	Balti	more	Chic	ago	Hele	na	Duli	ıth
Component	2018	2021	2018	2021	2018	2021	2018	2021	2018	2021	2018	2021
Fenestration U- factor	0.40		0.32	0.30	0.32	0.30	0.30		0.30		0.30	
Fenestration SHGC	0.25		0.25		0.4		NR	0.40	NR		NR	
Skylight U-factor	0.65		0.55		0.55		0.55		0.55		0.55	
Ceiling R-value	38	49	38	49	4 9	60	49	60	49	60	49	60
Frame Wall R- value (selected for modeling)	13		13+5		13+5	13+10	13+5	13+10	13+10		13+10	• • •
Mass Wall R-value (<half></half> half on interior	4/6		8/13		8/13		13/17		15/20	· ·	19/21	
Floor R-value	13		19		19		30		30		38	
Basement wall R- value, ci/cavity	0	· ·	5/13		10/13		15/19		15/19		15/19	
Slab R- value/depth	0		0	10/2	10/2	10/4	10/2	10/4	10/4		10/4	
Crawl wall R- value, ci/cavity	0		5/13		10/13		15/19		15/19	· · ·	15/19	

Insulation and Fenestration Requirements. Source: adapted from the 2018 and 2021 IECC.

APPENDIX E: ENERGY USE BY CLIMATE ZONE

		Annual Energy Use CZ 2 Phoenix							
		Ma	iss Wall (3 Electric	0%)	Fra	me Wall (7 Electric	70%)		
Configuration		kWh/yr	\$/yr	Savings*	kWh/yr	\$/yr	Savings*		
2018 Baseline	Slab Basement Crawl**	17,107	2,225		17,087	2,223			
2018 + 2021 ceiling insulation	Slab Basement Crawl**	17,052	2,218	0.3%	17,028	2,215	0.4%		
2018 + 2021 slab insulation	Slab Ave for CZ								
2018 + 2021 wall cont. insulation	Slab Basement Crawl**								
2018 + 2021 window U-Factor	Slab Basement Crawl**								
2021 without efficiency options	Slab Basement Crawl**	16,638	2,164	2.7%	16,615	2,162	2.7%		
2021 + HVAC option	Slab Basement Crawl**	15,727	2,046	8.0%	15,715	2,045	8.0%		
2021 + Water Heater option	Slab Basement Crawl**	15,618	2,030	8.8%	15,589	2,027	8.8%		
2021 + Ventilation option	Slab Basement Crawl**	16,506	2,147	3.5%	16,465	2,142	3.6%		
2021 + Duct option	Slab Crawl**	15,768	2,051	7.8%	15,715	2,044	8.1%		
	Basement Crawl** Slab Crawl**								

*Cost savings (\$/yr) relative to 2018 baseline

		Annual Energy Use CZ 3 Memphis							
		Ма	ass Wall (1	0%)	Fra	me Wall (9	90%)		
			Electric			Electric			
Configuration		kWh/yr	\$/yr	Savings*	kWh/yr	\$/yr	Savings*		
2018 Baseline	Slab	15618	2031		15,557	2,023			
	Basement	16612	2161		16547	2152			
	Crawl**	15144	1970		15056	1958			
2018 + 2021 ceiling insulation	Slab	15536	2021	0.5%	15,472	2,012	0.5%		
	Basement	16521	2149	0.6%	16,451	2,140	0.6%		
	Crawl**	15053	1958	0.6%	14,959	1,946	0.6%		
2018 + 2021 slab insulation	Slab	14938	1943	4.3%	14,877	1,935	4.3%		
	Ave for CZ					1,936			
2018 + 2021 wall cont. insulation	Slab								
	Basement								
	Craw]**								
2018 + 2021 window U-Factor	Slab	15566	2024	0.3%	15,501	2,016	0.3%		
	Basement	16553	2154	0.3%	16,489	2,145	0.3%		
	Crawl**	15091	1963	0.4%	14,994	1,951	0.4%		
2021 without efficiency options	Slab	14,408	1,874	7.7%	14,344	1,866	7.8%		
	Basement	15,903	2,068	4.3%	15,832	2,059	4.3%		
	Crawl**	14,610	1,900	3.6%	14,519	1,889	3.5%		
2021 + HVAC option	Slab	13,485	1,754	13.6%	13,450	1,749	13.5%		
	Basement	14,824	1,928	10.8%	14,786	1,924	10.6%		
	Craw!**	13,561	1,765	10.4%	13,502	1,756	10.3%		
2021 + Water Heater option	Slab	13,277	1,726	15.0%	13,212	1,718	15.1%		
	Basement	14,742	1,916	11.3%	14,669	1,907	11.4%		
	Craw **	13,470	1,752	11.1%	13,382	1,740	11.1%		
2021 + Ventilation option	Slab	14,326	1,864	8.2%	14,259	1,855	8.3%		
	Basement	15,727	2,046	5.3%	15,651	2,036	5.4%		
	Crawl**	14,446	1,879	4.6%	14,346	1,867	4.6%		
2021 + Duct option	Slab	13,816	1,797	11.5%	13,749	1,788	11.6%		
	Crawl**	14,273	1,857	5.7%	14,174	1,844	5.8%		
*Cost savings (\$/yr) relative to 2018	baseline								

			Annual En CZ 4 Bal Frame Natura	timore Wall					
Configuration		kWh/yr	thrm/yr	\$/yr	Savings*				
2018 Baseline	Slab	8,262	697	1,807	Satings				
2010 Duscinic	Basement	9,848	696	2,012					
	Craw **	8,669	665	1,826					
	Clawi	0,005	005	1,020					
2018 + 2021 ceiling insulation	Slab	8,244	690	1,797	0.6%				
	Basement	9,833	689	2,003	0.4%				
	Craw!**	8,652	659	1,818	0.4%				
2018 + 2021 slab insulation	Slab	8,180	674	1,772	1.9%				
	Ave for CZ	ŗ		1,772					
				,					
2018 + 2021 wall cont. insulation	Slab	8,177	661	1,758	2.7%				
	Basement	9,763	660	1,964	2.4%				
	Craw ^{]**}	8,590	629	1,778	2.6%				
		,							
2018 + 2021 window U-Factor	Slab	8,256	687	1,796	0.6%				
	Basement	9,848	686	2,002	0.5%				
	Craw]**	8,666	656	1,816	0.5%				
		,		,					
2021 without efficiency options	Slab	7,673	626	1,655	8.4%				
	Basement	9,159	649	1,873	6.9%				
	Crawl**	8,174	616	1,711	6.3%				
2021 + HVAC option	Slab	7,348	565	1,550	14.2%				
	Basement	8,795	580	1,753	12.9%				
	Craw!**	7,761	552	1,590	12.9%				
2021 + Water Heater option	Slab	7,670	604	1,624	10.1%				
	Basement	9,188	617	1,835	8.8%				
	Craw!**	8,171	594	1,678	8.1%				
2021 + Ventilation option	Slab	7,931	586	1,648	8.8%				
	Basement	9,481	584	1,847	8.2%				
	Crawl**	8,420	575	1,700	6.9%				
				·					
2021 + Duct option	Slab	7,495	581	1,585	12.3%				
	Crawl**	7,732	607	1,644	10.0%				
*Cost savings (\$/yr) relative to 2018									

			Annual En CZ 5 Cl Frame Natural G		
Configuration		kWh/yr	thrm/yr	\$/yr	Savings*
2018 Baseline	Slab	7635	1098	2156	Ū
	Basement	9,297	1,089	2,355	
	Craw!**	7,720	999	2,054	
2018 + 2021 ceiling insulation	Slab	7,691	1,090	2,146	0.5%
	Basement	9,285	1,080	2,343	0.5%
	Crawl**	7,702	991	2,043	0.5%
2018 + 2021 slab insulation	Slab Ave for CZ	7,647	1,071	2,120	1.7%
2018 + 2021 wall cont. insulation	Slab	7,617	1,049	2,093	2.9%
	Basement	9,209	1,040	2,291	2.7%
	Crawl**	7,635	952	1,993	3.0%
2018 + 2021 window U-Factor	Slab Basement Crawl**				
2021 without efficiency options	Slab	7,142	1,018	1,999	7.3%
	Basement	8,614	1,037	2,210	6.2%
	Crawl**	7,216	947	1,934	5.8%
2021 + HVAC option	Slab	6,770	898	1,824	15.4%
	Basement	8,209	914	2,029	13.8%
	Crawl**	6,838	837	1,769	13.9%
2021 + Water Heater option	Slab	7,169	1,002	1,977	8.3%
	Basement	8,655	1,007	2,175	7.6%
	Crawl**	7,245	929	1,910	7.0%
2021 + Ventilation option	Slab	7,400	966	1,978	8.3%
	Basement	8,927	960	2,170	7.9%
	Craw!**	7,482	901	1,921	6.5%
2021 + Duct option	Slab Crawl**	7,022	929	1,889	12.4%
*Cost savings (\$/yr) relative to 2018	baseline				

						Annual Energy Use CZ 7 Duluth*** Frame Wall Natural Gas						
Configuration		kWh/yr	thrm/yr	\$/yr	Savings*	kWh/yr	thrm/yr	\$/yr	Savings*			
2018 Baseline	Slab	7,374	1,201	۶/۷ ۲ 2,221	Savings	7,178	1,676	2,735	Javings			
2018 baseline	Basement	8,962	1,166	2,221 2,391		8,664	1,612	2,733				
	Crawl**	7,345	1,100	2,066		7,119	1,012	2,515				
	Clawi	7,545	1,057	2,000		7,115	1,475	2,313				
2018 + 2021 ceiling insulation	Slab	7,359	1,192	2,210	0.5%	7,116	1,665	2,722	0.5%			
	Basement	8,945	1,155	2,378	0.5%	8,649	1,599	2,857	0.6%			
	Crawl**	7,333	1,047	2,054	0.6%	7,105	1,460	2,499	0.6%			
2018 + 2021 slab insulation	Slab											
	Ave for CZ											
2018 + 2021 wall cont. insulation	Slab											
	Basement											
	Crawl**											
						CZ 7 2021	CZ 7 2021 no HRV, for reference:					
2018 + 2021 window U-Factor	Slab					7,087	1,671	2,678	2.1%			
	Basement					8,479	1,607	2,791	2.9%			
	Craw!**					7,028	1,466	2,454	2.4%			
2021 without efficiency options	Slab	6,970	1,198	2,165	2.5%	7,321	1,605	2,639	3.5%			
2021 without enciency options	Basement	8,379	1,158	2,105	3.3%	8,787	1,523	2,743	4.5%			
	Crawl**	6,937	1,102	2,008	2.8%	7,283	1,525 1,4 1 9	2,743	3.1%			
	Clawi	0,937	1,052	2,008	2.0/0	7,205	1,419	2,430	5.170			
2021 + HVAC option	Slab	6,586	1,054	1,964	11.6%	6,879	1,403	2,369	13.4%			
	Bas e ment	7,984	1,024	2,115	11.5%	8,344	1,333	2,486	13.5%			
	Crawl**	6,583	930	1,833	11.3%	6,870	1,244	2,201	12.5%			
2021 + Water Heater option	Slab	7,037	1,188	2,155	3.0%	7,400	1,600	2,635	3.7%			
2021 - Water Heater Option	Basement	8,441	1,135	2,282	4.6%	8,854	1,499	2,718	5.4%			
	Crawi**	7,005	1,038	1,993	3.5%	7,353	1,409	2,429	3.4%			
	Clawi	7,005	1,050	1,555	5.570	CZ 7 2021 HRV .75 SRE v6			0.170			
2021 + Ventilation option	Slab	7,198	1,126	2,120	4.5%	7,307	1,588	2,619	4.2%			
Loll Contraction option	Basement	8,672	1,068	2,250	5.9%	8,772	1,502	2,719	5.4%			
	Crawl**	7,189	995	1,980	4.2%	7,271	1,403	2,420	3.8%			
2021 + Duct option	Slab Crawl**	6,832	1,043	1,985	10.6%	7,210	1,409	2,418	11.6%			
*Cost savings (\$/vr) relative to 201												

*Cost savings (\$/yr) relative to 2018 baseline

**Crawl: vented CZ 3-4; conditioned CZ 5-7

***For CZ 7 all 2021 results include an HRV

Cost & Size Comparisons:

New Manufactured Homes and New Single-Family Site-Built Homes

2014 - 2020

		2020		2019		2018		2017		2016		2015		2014
New Manufactured Homes														
All1														
Avg. Sales Price		\$ 87,00	0	\$ 81,900)	\$ 78,500	9	71,900	5	5 70,600		E 68.00	`	с <u>с</u> о
Avg. Square Feet		1,47		1,448		1,438	4	1,426		1,446		68,000 1,430		
Avg. Cost per Sq. Ft.		\$ 59.14	1	\$ 56.56			\$		9					1,43 \$ 45.4
Single													· ·	Ψ 1 0. .
Avg. Sales Price	2	\$ 57,300) :	\$ 53,200		\$ 52,400	s	48,300	đ	46 700				_
Avg. Square Feet		1,085		1,072		0 32,400 1,072	9	48,300	\$	46,700 1,075		45,600		,
Avg. Cost per Sq. Ft.	5	52.81					\$	-	\$			1,092 41.76		1,11 6 40.3
Double									Ŷ	10.11	Ψ	41.70		p 40.3
Avg. Sales Price	4	5 108,500	. a	104 000			•							
Avg. Square Feet	4	1,760		5 104,000 1,747	9		\$	92,800	\$		\$,		82,00
Avg. Cost per Sq. Ft.	9				9	1,747 5 51.26	\$	1,733 53.55	ſ	1,746	<i>•</i>	1,713		1,71
Housing Starts vs. MH Shipments						01.20	4	55.55	\$	51.26	\$	50.61	\$	47.9
(Thousands of units)														
New Single Family														
Housing Starts		991		888		876		849		782		715		64
Percent of Total		91%)	90%		90%		90%		91%		91%		91
Manufactured Home Shipments												/ •		71
Shipped		94		95		97		93		07				
Percent of Total		9%		10%		10%		93 10%		81 9%		71		64
fotal		1,085		983		973						9%		99
New Single-Family								942		863		786		678
ite-Built Homes Sold														
Home and Land Sold as Package)														
vg. Sales Price	\$	391,900	\$	383,900	\$	385,000	\$	384,900	\$	360,900	\$ 3	52,700	c	247 700
erived Average Land Price	\$	83,303	\$	84,485	\$		\$	•	\$ 5	82,491		80,246	\$ \$	347,700 84,444
rice of Structure									•		Ŷ	00,210	Ψ	01,111
vg. Square Feet		2,527		2,518		2,602		0.645		0.650				
vg. Price per Sq Ft. (excl. land)	\$	122,12	\$		\$		\$	2,645 111.05	\$	2,650 105.06	¢ .	2,724 100.02	¢	2,707
lanufactured Home Shipments							*	111.00	Ψ	105.00	φ	100.02	\$	97.25
otal		04 200		04 (75										
ngle-Section		94,390 42,578		94,615 42,920		96,555		92,902		81,136		70,544		64,331
ulti-Section		42,578 51,812		42,930 51,685		44,979 51,576		46,305 46,597		38,944		32,210		30,218
ew Manufactured Homes Placed r Residential Use)						51,576	-	40,397		42,192		38,334		34,113
cated in Communities		27%		210/		200		0.5.2						
ocated on Private Property		27 % 73 %		31% 69%		37%		32%		34%		34%		33%
						63%		68%		66%		66%		67%
tled as Personal Property tled as Real Estate		78%		76%		77%		76%		77%		80%		80%
acu as intal Estate		19%		19%		17%		17%		17%		14%		13%

¹ Includes manufactured homes with more than two sections.

Source: U.S. Census Bureau and U.S. Department of Housing and Urban Development, Survey of Construction, https://www.census.gov/construction/chars/; https://www.census.gov/construction/nrc/xls/starts_cust.xls

Source: U.S. Census Bureau and U.S. Department of Housing and Urban Development, Manufactured Housing Survey

October 1, 2021

Manufactured Housing Consensus Committee Office of Manufactured Housing Programs U.S. Department of Housing and Urban Development 451 7th Street SW, Room 9166 Washington, D.C. 20410

RE: Notice of a Federal Advisory Committee Meeting Manufactured Housing Consensus Committee (Docket No. FR-6270-N-02)

Dear Sir/Madam:

The Manufactured Housing Institute (MHI) is pleased to provide feedback to the U.S. Department of Housing and Urban Development (HUD) and the Manufactured Housing Consensus Committee (MHCC) in response to the request for public comments in preparation for the MHCC's upcoming teleconference on October 8, 2021, about the Department of Energy's (DOE) supplemental notice of proposed rulemaking titled "Energy Conservation Program: Energy Conservation Standards for Manufactured Housing."

MHI is the only national trade association that represents every segment of the factory-built housing industry. Our members include home builders, suppliers, retail sellers, lenders, installers, community owners, community operators, and others who serve the industry, as well as 48 affiliated state organizations. In 2020, our industry produced nearly 95,000 homes, accounting for approximately nine percent of new single-family home starts. These homes are produced by 34 U.S. corporations in 138 plants located across the country. MHI's members are responsible for close to 85 percent of the manufactured homes produced each year.

To reiterate MHI's position from its previous comment letter and remarks, the DOE's proposed rule is fundamentally flawed, both because it does not follow an accurate cost-benefit analysis as the statute requires and because it ignores the importance of HUD as the primary regulator of construction and safety standards for manufactured homes.

Ownership Related Costs

MHI urges the MHCC to call on the DOE to revise its proposed energy requirements to reflect a complete and accurate cost benefit analysis which is required by the Energy Independence and Security Act of 2007 (EISA).

The DOE's proposal is based on improper calculations and methodologies including underestimating the current costs of homes and the costs of the new materials to construct them, and not considering the cost of testing procedures and compliance. Further, the DOE significantly underestimates the fact that the first buyer of an energy efficient manufactured home would likely never reap the economic benefit. Based on MHI's industry data, buyers usually sell their homes within seven to ten years of purchase. Further, it is unlikely that a manufactured homebuyer financing the purchase of a new manufactured home would even recover these upfront costs at a future sale. Consequently, as result of the DOE's proposal, homeowners will not realize incremental value for energy features that increase a home's purchase or sale price.

At the efficiency levels proposed by the DOE in its recent rulemaking, MHI's survey of manufacturers found that it is unlikely that a buyer purchasing a new home and financing 90 percent of the purchase price would even recover these upfront costs at a future sale. Instead, the DOE's proposal would likely yield a 1655 Fort Myer Drive, Suite 200, Arlington, VA 22209

(703) 558-0400 | info@mfghome.org www.manufacturedhousing.org Page 2 Submission by the Manufactured Housing Institute October 1, 2021

negative return over the ownership period. While several reasons contribute to this, including purchase price and availability of financing options, the fact that homebuyers usually sell their homes within the first seven to ten years of purchase is the most relevant.

Using the DOE's assumptions of cost and location as outlined in the Technical Support Document, which assumes a 30-year mortgage which is not the norm for manufactured housing, MHI conducted a costbenefit analysis using a more realistic loan term which is being utilized in the market today. Assuming a downpayment of 10 percent, an interest rate of nine percent, a loan term of 20 years, and a tenancy period of 10 years, MHI's cost-benefit analysis found that the DOE's proposal will add at a minimum almost \$1,000 to the cost of a new single-section manufactured home and up to \$5,500 to the cost of a multi-section home depending on location (See Appendix I)¹. Such price increases would be financially devasting for homebuyers looking to finance the purchase of a manufactured home.

It is important to note that only place that MHI's analysis shows a savings is in Fairbanks, Alaska, where the savings is only \$369 after ten years. In 2020, Alaska had only 64 homes shipped to the state and as of July 2021 only five homes had been shipped there. Further, the locations selected by the DOE for its analysis are locations that do not as a group represent their respective climate regions and tend to overestimate the energy benefits relative to the average of all locations.

Given these facts, any new energy conservation standard must avoid creating a scenario where the upfront increase to the purchase price of a home prices many consumers out of the market, even if those upfront costs could be amortized over the life of the home.

Compliance and Enforcement

As MHI has previously stated, it is unnecessary for the DOE to develop a new enforcement mechanism because the HUD Code is an already-established enforcement mechanism that mandates a uniform standard for design, construction, and installation, including federal requirements for safety, durability, and energy efficiency. While MHI recognizes that the DOE has the authority to develop an energy conservation standard for manufactured housing, it should be, as is required by ESIA, developed in coordination with HUD to ensure that any proposed rules are integrated into the HUD Code for enforcement. Failure to partner with HUD will result in complicated, overlapping requirements that will only increase manufacturing costs, hurting existing homeowners and prospective homebuyers.

While MHI and its members will always support sensible energy conservation efforts, overly burdensome regulations that even modestly increase the cost of a manufactured home will price many consumers out of homeownership. This increase will have a disproportionate impact on minority communities, who face the most significant burden in obtaining affordable homeownership and would be in direct contrast to the Administration's goal of achieving racial equity in homeownership. MHI stands ready to work with DOE, HUD and the MHCC on the development of realistic and achievable energy standards that not only encourages innovation and conservation, but also eliminates regulatory barriers that impede consumer access to safe, affordable manufactured housing.

Sincerely,

Just Gooch

Lesli Gooch, Ph.D. Chief Executive Officer

¹ When costs for compliance and testing are added, the homebuyer losses will increase, potentially significantly.

Page 3 Submission by the Manufactured Housing Institute October 1, 2021

Appendix I – Cost Benefit Analysis

The tables below provide Life Cycle Cost results for the DOE proposed rule. The figures offer a glimpse of the benefits and costs for a homebuyer purchasing either a single or two section home. The inputs for location selection, average home cost, increase in home cost related to the energy investment and resultant monthly energy savings match DOE's assumptions contained in the Technical Support Document (TSD). The table sums the major costs and benefits as experienced by the buyer over a 10-year, average occupancy period to yield a net benefit (cost) including incremental mortgage payment, added down payment and monthly energy savings. A negative value indicates that the buyer can expect to lose money on the energy investment making the home less affordable. For example, a purchaser of a single section home in Phoenix, AZ, can on average expect to experience a net cost of nearly \$4,900 over the 10-year period of occupancy. Other assumptions made in generating the tables are provided below. Note: all figures are expressed in current dollars. Further, it is assumed that the buyer does not realize an incremental price increase associated with the energy measures at the time of sale, an assumption that is based on a lack of evidence that energy features can demand a higher home price.

Assun	nptions
Down payment	10%
Principal	90%
Mort. interest rate	9%
Loan term (yrs)	20
Occupancy term (yrs)	10
Principal recapture rate	0%

			Single Section Home								
HUD Standards Climate Zone	Sample Locations	Average home cost (DOE)	Increase in home cost (DOE)	Percent increase in cost	Down payment	Inc. in mortgage	Inc. monthly mort. pay.	Energy savings (\$/mth) (DOE)	Net Mthly. Savings/ Cost	Principal repayment	Net benefit (cost)
1	Miami	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$20	(\$1)	\$1,646	(\$2,010)
1	Houston	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$24	\$3	\$1,646	(\$1,493)
1	Atlanta	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$29	\$8	\$1,646	(\$891)
1	Charleston	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$26	\$5	\$1,646	(\$1,340)
1	Jackson	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$28	\$7	\$1,646	(\$1,048)
1	Birmingham	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$27	\$7	\$1,646	(\$1,106)
2	Phoenix	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$28	(\$11)	\$3,081	(\$4,897)
2	Memphis	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$32	(\$7)	\$3,081	(\$4,432)
2	El Paso	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$30	(\$9)	\$3,081	(\$4,658)
2	San Francisco	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$23	(\$17)	\$3,081	(\$5,543)
2	Albuquerque	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$30	(\$9)	\$3,081	(\$4,666)
3	Baltimore	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$33	(\$4)	\$2,978	(\$3,967)
3	Salem	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$26	(\$12)	\$2,978	(\$4,892)
3	Chicago	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$34	(\$4)	\$2,978	(\$3,930)
3	Boise	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$28	(\$10)	\$2,978	(\$4,605)
3	Burlington	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$35	(\$3)	\$2,978	(\$3,812)
3	Helena	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$36	(\$2)	\$2,978	(\$3,686)
3	Duluth	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$49	\$11	\$2,978	(\$2,144)
3	Fairbanks	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$69	\$32	\$2,978	\$369

Page 5 Submission by the Manufactured Housing Institute October 1, 2021

			Multi Section Home								
HUD Standards Climate Zone	Sample Locations	Average home cost (DOE)	Increase in home cost (DOE)	Percent increase in cost	Down payment	Inc. in mortgage	Inc. monthly mort. pay.	Energy savings (\$/mth) (DOE)	Net Mthly. Savings/ Cost	Principal repayment	Net benefit (cost)
1	Miami	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$33	(\$1)	\$2,648	(\$3,134)
1	Houston	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$40	\$6	\$2,648	(\$2,313)
1	Atlanta	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$48	\$15	\$2,648	(\$1,306)
1	Charleston	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$42	\$8	\$2,648	(\$2,065)
1	Jackson	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$46	\$12	\$2,648	(\$1,597)
1	Birmingham	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$45	\$11	\$2,648	(\$1,696)
2	Phoenix	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$50	\$40	(\$10)	\$3,942	(\$5,714)
2	Memphis	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$50	\$45	(\$5)	\$3,942	(\$5,170)
2	El Paso	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$50	\$42	(\$8)	\$3,942	(\$5,496)
2	San Francisco	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$50	\$31	(\$19)	\$3,942	(\$6,835)
2	Albuquerque	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$50	\$42	(\$8)	\$3,942	(\$5,535)
3	Baltimore	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$45	(\$2)	\$3,732	(\$4,584)
3	Salem	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$34	(\$14)	\$3,732	(\$5,949)
3	Chicago	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$46	(\$2)	\$3,732	(\$4,502)
3	Boise	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$37	(\$10)	\$3,732	(\$5,508)
3	Burlington	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$47	(\$0)	\$3,732	(\$4,364)
3	Helena	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$48	\$0	\$3,732	(\$4,271)
3	Duluth	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$66	\$18	\$3,732	(\$2,105)
3	Fairbanks	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$94	\$47	\$3,732	\$1,292

Manufactured Housing Association for Regulatory Reform

1331 Pennsylvania Avenue, NW • Suite 512 • Washington, DC 20004 • 202-783-4087 • Fax 202-783-4075 • mharrdg@aol.com

October 1, 2021

VIA FEDERAL EXPRESS AND ELECTRONIC SUBMISSION

Manufactured Housing Consensus Committee C/O Home Innovation Research Labs Administering Organization 400 Prince George's Boulevard Upper Marlboro, Maryland 20774

Re: Energy Conservation Standards for Manufactured Housing - Second Comments

Dear Members of the Manufactured Housing Consensus Committee:

The Manufactured Housing Association for Regulatory Reform (MHARR) submits the following second set of comments in connection with the Manufactured Housing Consensus Committee's (MHCC) consideration of a Supplemental Notice of Proposed Rulemaking (SNPR) regarding "Energy Conservation Standards for Manufactured Housing" published by the U.S. Department of Energy (DOE) in the Federal Register on August 26, 2021.¹ MHARR is a national trade association representing producers of manufactured housing subject to regulation pursuant to the National Manufactured Housing Construction and Safety Standards Act of 1974 (1974 Act), as amended by the Manufactured Housing Improvement Act of 2000 (2000 reform law), as well as relevant provisions of the Energy Independence and Security Act of 2007 (EISA).

I. <u>INTRODUCTION</u>

The following are MHARR's <u>second</u> set of comments regarding MHCC consideration of DOE's August 26, 2021 manufactured housing energy standards supplemental proposed rule. MHARR's initial comments, submitted September 15, 2021, principally addressed policy issues related to the proposed standard, including its predictably destructive cost impact on manufactured housing consumers, the manufactured housing market and the manufactured housing industry – with disproportionate impacts on smaller industry businesses – as well as the absence of any genuine or legitimate need for excessive and discriminatory manufactured housing residents already pay less for <u>all</u> types of home energy sources (<u>i.e.</u>, oil, piped gas and electricity) than residents of detached, single-family homes, under existing HUD standards. The comments below will address: (1) the <u>fundamental incompatibility</u> of the International Energy Conservation Code (IECC) – either

Preserving the American Dream of Home Ownership Through Regulatory Reform

¹ MHARR's September 15, 2021 comments are hereby incorporated herein by reference.

"modified" by DOE or not – with manufactured housing construction and affordability; (2) the <u>fundamental incompatibility</u> of the IECC's stated objectives and voting system (through 2021) with the objectives and consensus processes of the Manufactured Housing Improvement Act of 2000; and (3) an initial statement of specific DOE proposed standards that would be inappropriate, non-cost-effective for manufactured housing, or otherwise destructive of manufactured housing and the manufactured housing market.

Again, for the reasons set forth in these comments, as well as MHARR's September 15, 2021 comments, and the comments that MHARR will submit in advance of the MHCC's scheduled October 20, 2021 meeting, the August 26, 2021 proposed DOE manufactured housing energy standards rule should be <u>rejected</u> by the MHCC with relevant comments submitted to DOE, as well as a request for an extension of the current October 25, 2021 comment deadline, in order to ensure a complete and thorough review of the DOE proposal, and proper stakeholder input.

II. <u>COMMENTS</u>

A. THE IECC IS NOT AN APPROPRIATE CODE FOR MANUFACTURED HOUSING OR A LEGITIMATE BASIS FOR MH ENERGY STANDARDS

The International Energy Conservation Code (IECC), as acknowledged by DOE,² is not and never has been a code for manufactured homes. Whereas the Federal Manufactured Housing Construction and Safety Standards (FMHCSS) and FMHCSS energy standards developed and maintained by the U.S. Department of Housing and Urban Development (HUD) are specifically tailored to the unique size, affordability and construction imperatives of manufactured homes based on a balance between homeowner protection and affordability <u>expressly mandated by federal law</u>,³ the IECC standards are not now – <u>and never have been</u> – developed for manufactured homes or the affordability needs of actual and potential manufactured home consumers. Nor have they ever been developed, voted-on, or <u>approved</u> (including in their 2021 iteration) by individuals with a direct knowledge of either manufactured housing <u>or</u> the unique construction and affordability challenges required to comply with federal manufactured housing law. The IECC, accordingly, is <u>fundamentally contrary</u> to applicable federal manufactured housing law <u>and cannot be transformed into an appropriate code for affordable manufactured homes through arbitrary, piecemeal DOE modifications</u>.

Because the IECC is not developed based on the specific construction and affordability aspects of manufactured housing, the IECC would devastate the affordable manufactured housing market. For example, the 2015 IECC – the basis for DOE manufactured housing energy standards

 $^{^{2}}$ See, 86 Federal Register, No. 163 (August 26, 2021) "Energy Conservation Standards for Manufactured Housing," p. 47744, at p. 47754, col. 3: "DOE notes that the IECC is designed for building structures that have a permanent foundation. Manufactured housing structures, however, are not built on permanent foundations but are built on a steel chassis to enable them to be moved or towed when needed. As a result, because they present their own set of <u>unique</u> <u>considerations that the IECC was not intended to address</u>, some aspects of the IECC are unable, or highly impractical, to be applied to manufactured housing." (Emphasis added).

³ See e.g., 42 U.S.C. 5403(e)(4): "The consensus committee ... and the Secretary, in establishing standards ... under this section shall – consider the probable effect of such standard on the cost of the manufactured home to the public." (Emphasis added).

initially proposed in 2016 -- would have resulted in <u>retail</u> level purchase price increases of \$4,601.00 for a single-section manufactured home, and \$5,825.00 for a double-section manufactured home as calculated by MHARR members.⁴ These amounts included industry-standard builder and retailer profit margins,⁵ but did <u>not</u> include regulatory testing, compliance or enforcement costs, which were not estimated or considered by DOE in the June 2016 manufactured housing energy rulemaking.

Consistent with MHARR's 2016 findings, a June 2021 Home Innovation Research Labs (HIRL) report,⁶ found that the <u>2021 IECC</u>, as published, would result in an incremental construction cost increase of (548.00) to (9.301.00) for a specified site-built reference home of 2,500 square feet, depending on the compliance mechanism selected.⁷The same analysis shows a national simple construction cost payback period ranging from 32 to 67 years, again based on the compliance mechanism. Prorating these amounts to the smaller size of an "average" single-section and double-section manufactured home, as defined by the U.S. Census Bureau, and including industry-standard profit margins identical to those used in MHARR's 2016 calculation, the 2021 IECC, in unmodified form, would yield a minimum incremental retail-level price increase of \$7.958.00 for an "average" single section manufactured home and a minimum incremental retaillevel price increase of \$12,908.00 for an "average" double-section manufactured home.8 These amounts, though, are necessarily partial and incomplete, in that: (1) they do not include regulatory testing, compliance or enforcement costs; and (2) do not include costs attributable to future changes to the IECC and the costs of compliance with such future modifications - which are, and would be, totally unnecessary for today's modern, already energy cost-efficient, HUD Code manufactured homes.

The <u>fundamental incompatibility</u> between the IECC and standards that would be appropriate for HUD Code manufactured housing is due, in part, to the absence of a statutory purchase price affordability mandate for the IECC,⁹ comparable to the 1974 Act as amended by the 2000 reform law. It is also due to the nature and composition of the IECC committee and the IECC development process, <u>through and including the 2021 IECC</u> used by DOE as the basis for its proposed standards. Specifically – and unlike FMHCSS standards under the 2000 reform law -- <u>all iterations of the IECC through the 2021 version</u>, were subject to a "governmental consensus" process, in which local government building code officials with no responsibility for the regulation

⁴ See, MHARR August 8, 2016 written comments to DOE (2016 DOE Comments), at p. 15, note 42.

⁵ Industry-standard builder and retailer profit margins were calculated as multiples of 2.0 and 1.4 by MHARR, based on input from smaller, independent producers.

⁶ See, Attachment 4 to MHARR's September 15, 2021 MHCC comments.

⁷ See, HIRL Report at p. 14.

⁸ <u>I.e.</u>, for a single-section home: 6,548.00/2,500 square feet = 2.619 per square foot x 1,085 square feet (for an "average" single-section manufactured home) = $2,842.00 \times 2$ (builder profit) = $5,684.00 \times 1.4$ (retailer profit) = 7,958.00 retail level price increase. For a double section home: 6,548.00/2500 square feet = 2.619 per square foot x 1,760 square feet (for an "average" double-section manufactured home) = $4,610.00 \times 2$ (builder profit) = $9,220.00 \times 1.4$ (retailer profit) = 12,908.00 retail level price increase.

⁹ The absence of a purchase price affordability mandate for the IECC is reflected in its Statement of Intent (R-101.3) (2021), which provides: "This Code shall regulate the design and construction of buildings for the effective use and conservation of energy over the useful life of each building. This code is intended to provide flexibility to permit the use of innovative approaches and techniques to achieve this objective. This code is not intended to abridge safety, health, or environmental requirements contained in other applicable codes or ordinances." (Emphasis added).

of manufactured housing and no sensitivity to the affordability concerns implicated by extreme price increases, were exclusively empowered to consider and approve the final standards.¹⁰ Indeed, there is no evidence or indication that the IECC committee – through its 2021 iteration -- has <u>ever</u> had any members representing manufactured housing producers or stakeholders with specific knowledge of the industry, its homes, its consumers, its market characteristics, or the consumer financing of its homes. This stands in sharp contrast with the MHCC process, where proposed standards are considered and recommended by a congressionally-mandated consensus committee, with members "<u>qualified by background and experience</u> to participate in the work" of the Committee (emphasis added),¹¹ representing <u>all</u> relevant categories of stakeholders.

The National Association of Home Builders (NAHB), moreover, has maintained (with supporting evidence) that this "governmental consensus" process was "manipulated" and "abused" by energy special interests <u>during the 2021 revision cycle</u>. While this charge has led to significant changes in the IECC process for the <u>2024 cycle</u>, those changes do not even come close to a cure for the <u>fatal flaws</u> that make the IECC <u>inappropriate</u> and <u>unacceptable</u> as a basis for <u>any</u> manufactured housing energy standards.

Specifically, the 2021 IECC revision process saw multiple high-cost proposals previously rejected by IECC committees, reinstated and <u>adopted</u>, during the final government-official-only vote, after a behind-the-scenes campaign by energy special interests to lobby and pressure government officials to cast votes in favor of those previously-rejected proposals. A site-builder group, Leading Builders of America (LBA), explained this "manipulation" of the IECC process in a January 26, 2021 letter, stating: "For the building community, the 2021 [IECC] update is a cause for serious concern. Multiple code changes were approved that will increase the cost of a new home by up to <u>\$10,000</u> with only modest savings for consumers. Some of the new requirements have payback periods over 100 years. Each of these 'high-cost-low-benefit' code changes were twice rejected during the code development process. They were approved as a result of an unprecedented effort to manipulate the ICC's governmental online consensus vote." (Emphasis added). To support these claims, LBA provided recordings of conference calls with special interest activists lobbying government official voters to follow a "voting guide" showing the previously-rejected proposals the activists sought to have reinstated in the final IECC vote.

As a result of this "political manipulation," the ICC Board of Directors, in March 2021, voted to convert the IECC from a government code process to an American National Standards Institute (ANSI)-based consensus process. Under the Board's decision, however, this change will not become effective until the <u>2024</u> revision process begins. And even though the 2024 (and beyond) process will change because of the special interest "manipulation" implicitly <u>confirmed</u> through the decision of ICC Board, the Board incongruously decided to keep in place not only the "politically manipulated" and thus <u>tainted</u> 2021 revisions adopted through the "government only"

¹⁰ Under the IECC "governmental consensus" process, final votes on proposed changes and additions were cast <u>exclusively</u> by ICC-approved state and/or local <u>government officials</u> (i.e., other interest groups had no say <u>whatsoever</u>, in the final provisions of the code). In a February 2, 2021 letter to Congress, ICC explained the IECC process as follows: "[V]olunteer government officials with experience and expertise <u>exercise by far the most control in the process</u>. Volunteer [state and local] government officials have the <u>final vote</u> on any proposed code change." (Emphasis added). Thus, while industry and consumer stakeholders could participate in the IECC <u>committee</u> process, they had no vote at all on the final code.

¹¹ See, 42 U.S.C. 5403(a)(3)(B)(i).

system then in place, but <u>all</u> of the IECC provisions previously approved through that same tainted and flawed system. The Executive Summary of the ICC Board's decision thus states: "The 2024 IECC <u>will start from the content of the 2021 IECC.</u>" (Emphasis added).¹²While thus effectively acknowledging the validity of the claims of a fundamentally-tainted IECC 2021 process, the ICC decision will leave the <u>results</u> of that tainted process <u>in place</u> as a springboard to further contaminate future IECC revisions that would build upon a fundamentally-tainted "foundation."

The ICC Board's decision concerning the nature of the IECC is relevant to the August 26, 2021 DOE proposed rule in that it affirmatively confirms that the IECC, <u>through the 2021 iteration</u> <u>specifically utilized and relied-upon by DOE</u>, was: (1) not only approved in its final form by land use officials with no background whatsoever in manufactured housing; but (2) that it was developed and approved through a process that was "abused" and "manipulated" to impose measures that are excessively-costly and produce no positive results for consumers over a normal homeownership tenure period. Consequently and particularly in light of the <u>extreme</u> purchase price impacts documented by the HIRL report, it is not – and <u>should not</u> be -- surprising that the 2021 IECC, to date, has not been adopted for site-built or modular homes by any jurisdiction in the United States. ¹³More importantly, though, such a code, that <u>since its inception</u> has been under the exclusive control of state and/or local governments officials that: (1) exclude or otherwise discriminate against manufactured homes and manufactured home construction <u>or</u> regulation -- is not now, never has been, and <u>never could be</u> a proper or legitimate basis for manufactured housing energy standards.

Moreover, even <u>after</u> the IECC process changes for the 2024 revision cycle, the IECC would remain a fundamentally unsuitable and unacceptable code for supposedly "affordable" manufactured housing. First, there continues to be no purchase price affordability mandate for IECC standards comparable to that contained in the 1974 Act as amended. Second, an official statement published by the ICC Board states that local building officials with no involvement whatsoever with any other aspect of manufactured housing regulation – and often opponents of equitable zoning and placement for manufactured homes – "will continue to have a leading voice" in the IECC development process.¹⁵Third, ICC appointments to the 2024 IECC residential committee <u>exclude any</u> representatives of smaller, independent manufactured housing producers or businesses, but do include representatives of "climate change" special interest groups with no

¹² <u>See</u>, International Code Council, "Path Forward on Energy and Sustainability to Confront a Changing Climate." (2021), attached hereto as Attachment 1.

¹³ <u>See</u>, IECC adoption chart, attached hereto as Attachment 2. As a result, under the August 26, 2021 DOE proposed rule, manufactured homes with a list retail price over \$55,000.00 would be built to stricter and much more costly energy standards than million dollar-plus site-built homes located <u>anywhere</u>.

¹⁴ The same local governments that have controlled the IECC, have – for <u>years</u> – used zoning ordinances, which they exclusively control, to either discriminatorily exclude or restrict the placement and use of manufactured homes.

¹⁵ See, Attachment 1, <u>supra</u>. According to state energy code adoption data maintained by DOE, <u>seven</u> states do not have <u>any</u> type of statewide energy code, and another <u>30 states</u> have adopted the 2009 (or earlier) version of the IECC. <u>See</u>, Attachment 2, hereto. Requiring manufactured homes to comply with a 2021 IECC that, according to ICC itself, is 40% more stringent than the 2009 IECC and only <u>10% below net-zero energy</u> for residential buildings, not only imposes drastic, costly and market-destructive mandates on manufactured housing, but also <u>discriminates</u> against manufactured homes (comprising just 6% of the nation's housing stock), manufactured housing consumers and manufactured housing industry businesses.

conceivable knowledge of manufactured housing, its construction, its consumers, or its market.¹⁶ Fourth, the same official ICC statement makes it clear that the focus and primary purpose of the IECC is related to the supposed effects of "climate change," <u>not</u> to ensuring the availability of affordable housing and combating the devastating economic and societal impacts of homelessness or housing insecurity. The ICC Board statement thus asserts, in relevant part: "The Code Council will build on the technical solutions provided by the International energy Conservation Code ... to create a portfolio of advanced mitigation solutions to battle the impacts of our changing climate. This portfolio will provide a menu of options for jurisdictions, from a strong and increasing set of minimum requirements, to pathways to net zero energy and additional greenhouse gas reduction policies."¹⁷The IECC's purposes, objectives and processes, consequently, are in conflict with and violate the affordable housing and housing availability requirements and policies of pre-existing federal manufactured housing law.

Accordingly, (and for the additional reasons set forth in MHARR's initial September 15, 2021 comments) the MHCC should reject the August 26, 2021 proposed DOE standards based upon the 2021 IECC.

B. DOE'S COST "ANALYSIS" IS INCOMPLETE AND MISLEADING AS IT FAILS TO REFLECT THE FULL COST OF THE PROPOSED RULE

DOE's August 26, 2021 SNPR contains an alleged cost-benefit analysis of its proposed manufactured housing energy conservation rule. That supposed analysis, however – which is <u>affirmatively required</u> by both EISA and the 1974 Act, as amended – is flawed, incomplete and misleading for multiple reasons, as explained in the following sections. And because that statutorily-required cost-benefit analysis is flawed, incomplete and misleading, the DOE August 26, 2021 proposed rule: (1) violates the substantive mandate of EISA section 413 (42 U.S.C. 17071) and section 604(e)(4) of the 1974 Act as amended (42 U.S.C. 5403(e)(4)); but is also (2) "arbitrary, capricious and not in accordance with law" in violation of the federal Administrative Procedure Act (APA).¹⁸ As a result of this inherent, fatal and <u>fundamental defect</u> in the August 26, 2021 proposed rule, the MHCC should <u>reject</u> the proposed rule and recommend its withdrawal as published.

¹⁶ For example, the 2024 IECC residential committee has no manufactured housing small business representatives but <u>does</u> include a "Senior Energy Policy Advocate" from the Natural Resources Defense Council (NRDC) an extremist "environmental" group. It also includes a representative from Clayton Homes, Inc. the largest manufactured housing corporate conglomerate, owned by Berkshire Hathaway Corp. (which also, coincidentally, also owns Johns Manville Corp., a major insulation producer).

¹⁷ Id. Indeed, in March 2021 "Frequently Asked Questions" published by ICC with respect to changes implemented for the 2024 IECC cycle, ICC states: "The 2021 IECC will be the <u>starting point</u> for revisions for the 2024 IECC. <u>The 2021 IECC base efficiency requirements are only 10% from net zero for residential buildings</u>; the new framework <u>requires</u> future IECC editions to increase base efficiency requirements...." (Emphasis added).

¹⁸ See, 5 U.S.C. 706(2)(a): "[A] reviewing court shall -- hold unlawful and set aside agency action, findings, and conclusions found to be ... arbitrary, capricious, an abuse of discretion, or otherwise not in accordance with law." See also, Department of Homeland Security v. Regents of the University of California, 591 U.S. ____, 140 S. Ct. 1891 (2020) regarding application of the "arbitrary, capricious, or abuse of discretion" standard.

1. DOE'S COST CALCULATIONS ARE – AND HAVE BEEN -- MATERIALLY FALSE AND DEFECTIVE

As an initial matter, it should be noted that the cost-benefit "analysis" offered by DOE in support of its now supposedly-withdrawn 2016 proposed rule, ¹⁹ was materially false and defective, <u>as is the cost-benefit analysis for the 2021 DOE proposed rule</u>. DOE, for example, maintained in its June 17, 2016 Notice of Proposed Rulemaking (NPR) that its proposed standards would add up to \$2,422 to the retail price of a single-section manufactured home (with a national average of \$2,226) and up to \$3,748 to the cost of a new multi-section manufactured home (with a national average of \$3,109).²⁰ The reality, however, as calculated by MHARR, with a specific focus on smaller, independent manufacturers, was that the 2016 DOE proposed manufactured housing energy standards would have added a minimum \$4,601.00 to the retail price of a new single-section manufactured home, ²¹ and a minimum of \$5,825.00 to the cost of a double-section manufactured home. Consequently, the <u>actual</u> purchase price cost-impact of DOE's 2016 proposed rule would have been <u>90% higher</u> than DOE's estimate for single-section manufactured homes, and <u>55% higher</u> than DOE's partial estimate for double-section homes.

Significantly, the same material flaw is incorporated within DOE's 2021 proposed rule. Thus, according to DOE, its "Tier 2" IECC-2021-based standards would result in a national average \$3,914.00 price increase for single-section manufactured homes (again, excluding likely significant costs related to enforcement, testing and regulatory compliance) and a \$5,289.00 price increase for double-section manufactured homes. As calculated by HIRL, however, the prorated purchase price impact of the unmodified 2021 IECC, would be \$7,958.00 for a single-section manufactured home and \$12,928.00 for a double-section home - a full 103% and 144% higher than DOE's 2021 estimate. Even if the HIRL figures were reduced to correspond to the same differentials illustrated by the 2016 data however (i.e., actual cost impacts 90% higher than DOEestimated for single-section homes and 55% higher for double-section homes) in order to account for the potential impacts of DOE modifications to the 2021 IECC in the August 26, 2021 proposed rule, the resulting purchase price increases would still be devastating for the affordability-based manufactured housing market, with a \$7,436.00 average retail price increase for single-section homes and a \$8,197.00 average retail price increase for double-section manufactured homes. These higher amounts, moreover, under DOE's own analysis, would impact at least 75% of all manufactured homes produced annually under DOE's "tiered" approach and, obviously, 100% of all manufactured homes under the un-tiered, "Tier 2-only" approach.²²

¹⁹ <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47746, stating that "both" proposed 2021 DOE manufactured housing energy standards (<u>i.e.</u>, "Tier 1" and "Tier 2"), "replace DOE's June 2016 proposal."

²⁰ <u>See</u>, 81 Federal Register, No. 117, (June 17, 2016) "Energy Conservation Standards for Manufactured Housing" at p. 39757.

²¹ Not including enforcement, testing and regulatory compliance costs which were not estimated by DOE in 2016 and <u>still</u> have not been quantified.

²² See, 86 Federal Register, <u>supra</u> at p. 47760, col.2: "Using this [\$55,000] threshold, Tier 1 consists of approximately 25 percent of the total sales (single-section and multi-section) of manufactured homes. Tier 2 consists of approximately 75 percent of the sales total (single-section and multi-section) of manufactured homes." These percentages, however, as is demonstrated in MHARR's September 15, 2021 MHCC comments, are based on <u>outdated</u> U.S. Census Bureau information. The most recent (2020) U.S. Census Bureau data, shows that the average sales price of a single-section manufactured home has increased to \$57,300 (see, Attachment 5 to MHARR's September 15, 2021 MHCC comments) and, today, is likely even higher, given subsequent and continuing increases in the cost of construction materials. As

2. DOE'S COST ANALYSIS FAILS TO CONSIDER THE PRICE IMPACT OF ONGOING REGULATORY COMPLIANCE COSTS

DOE's August 26, 2021 SNPR asserts that proposed manufactured housing energy conservation standards will result in net "life-cycle" operating cost savings to manufactured housing purchasers that would offset and exceed projected purchase price increases attributable to the proposed standards.²³The findings of DOE's cost analysis are necessarily flawed, skewed and materially inaccurate, however, in that they do not reflect, consider or account for key cost information. As a result, the claimed benefits of the proposed rule are netted against <u>incomplete and/or inaccurate cost data</u>, thereby yielding alleged "payback" amounts and timeframes that are distorted and biased in favor of the proposed rule. This distortion includes several aspects, which are addressed in this and subsequent sections, below.

Most significantly, the DOE cost-benefit analysis fails to include or consider significant additional costs that will be incurred by manufacturers - and inevitably passed to consumers in the purchase price of new manufactured homes - for: (1) testing, certification, inspections and other related activities to ensure compliance with any new DOE standards; (2) enforcement compliance and activity; and (3) ongoing regulatory compliance. Although such expenses are - and are recognized as -- an integral component of the ultimate consumer-level cost of any mandatory rule, they are totally excluded from DOE's cost-benefit and life-cycle cost (LCC) analyses in this rulemaking.²⁴ Those analyses, as a result, are skewed toward greater alleged benefits from the proposed rule and shorter consumer LCC "payback" times than would be the case if all applicable costs were included and considered. Indeed, as it stands now, under DOE's fundamentally flawed and incomplete LCC analysis, the projected consumer "payback" period - <u>i.e.</u> 10.9 years for a single-section home and 10.6 years for a multi-section home under "Tier 2"25 -- is already longer than many consumers will live in a new manufactured home.²⁶ The addition of testing, enforcement and regulatory compliance costs (and other additional uncaptured costs set forth below), would extend that payback period even longer, meaning that even fewer homebuyers (i.e., those not excluded from the market altogether due to prohibitive purchase price increases

a result, even under a "tiered" standards system, <u>fewer</u> than the previously-estimated 25% of manufactured homes would fall under Tier 1, and <u>more</u> than the previously-estimated 75% would fall under Tier 2, necessarily resulting in greater levels of market exclusion that claimed by DOE.

²³ <u>See e.g.</u>, 86 Federal Register, <u>supra</u> at p. 47746, col. 3: "... DOE <u>tentatively</u> estimates that benefits to manufactured homeowners – in terms of lifecycle cost ('LCC') savings and energy cost savings of the requirements as proposed in both proposals [<u>i.e.</u>, "Tier 1" and "Tier 2"] – <u>could</u> outweigh the potential increase in home price for manufactured homes." (Emphasis added). This phraseology is somewhat remarkable in its failure to state a firm, specific and evidence-supported conclusion regarding the supposed cost-benefit justification for the proposed rule.

²⁴ <u>Id</u>. at p. 47759, col. 1: "DOE is not proposing any testing, compliance or enforcement provisions at this time. DOE has also not included any potential associated costs of testing, compliance or enforcement."

²⁵ These periods are, as noted above, <u>already</u> materially skewed and too short because DOE's analysis underestimates the purchase price impact of the substantive standards themselves. A larger increase in a home's purchase price necessarily results in a longer "payback" period.

²⁶ See, 86 Federal Register, <u>supra</u> at p. 47747, Table 1.4. While the same table indicates a "simple payback period" of 3.7 years under "Tier1" for a single-section home, and 3.5 years for a double-section home, these figures are misleading in themselves, in that: (1) the final DOE rule, as DOE <u>admits</u> in its SNPR, may impose the "Tier 2" standards alone – without <u>any</u> "Tier 1;" and (2) few <u>if any</u> double-section homes will qualify for "Tier 1" treatment in any event, if DOE maintains its current proposed \$55,000.00 retail purchase price demarcation.

attributable to the proposed rule) will ever recapture purchase price increases necessitated by the proposed rule.

This deceitful bifurcation of direct standards-generated costs on the one hand and testing, enforcement and regulatory compliance costs on the other – notwithstanding the fact that <u>all</u> such costs, as well as further costs for compliance with existing HUD Procedural and Enforcement Regulations,²⁷ will represent additional consumer-level costs under <u>any</u> final DOE rule – began during the sham "negotiated rulemaking" process, where DOE, via its "Designated Federal Official," barred discussion or consideration of any aspect of enforcement or regulatory compliance, or their associated costs. The absurd and misleading bifurcation was continued in DOE's initial June 17, 2016 NPR,²⁸ and is now incorporated in the 2021 SNPR.²⁹ The intentional omission of such cost data, however, represents an <u>admission</u> by DOE that its cost-benefit analysis and LCC "calculations" are necessarily inaccurate, incomplete and not reflective of the true and complete costs of the proposed rule.

DOE's consumer-level cost-benefit analysis, therefore, compares "apples to oranges," netting out <u>all</u> conceivable "savings" against only <u>part</u> of the costs that will be added to the price of the home. As a result, there is no basis, <u>whatsoever</u>, for DOE to conclude – in connection with <u>this</u> rule -- that consumer benefits exceed costs, because the full costs of the proposed standards are not known and <u>cannot</u> be known until DOE, at a minimum, settles on a compliance and enforcement system, which – it admits – has not occurred. Nor can a cost-recovery <u>period</u> be accurately calculated because costs -- again – are not known and not fully quantified as of now, and cannot even be accurately estimated with so many unknowns. Indeed, the attempt to pass this off as any kind of legitimate cost-benefit analysis is itself disingenuous. Therefore, DOE's analyses are neither credible nor legitimate and, <u>per se</u>, cannot be – and are not – sufficient to satisfy the substantive cost-benefit directive of EISA section 413, the 1974 Act as amended, or the "arbitrary, capricious or abuse of discretion" standard of the APA.

²⁷ See, 24 C.F.R. 3282.1, et seq. describing HUD's manufactured housing inspection, monitoring and enforcement program. Regardless of whether energy standards developed by DOE pursuant to EISA section 413 are enforced by DOE or HUD, or some combination of both, the changes to HUD-regulated homes that will be required by the proposed DOE standards will result in separate and additional compliance costs under the Part 3282 regulations. These inevitable additional costs will include, but will not be limited to, costs for the re-design of homes; costs for the approval and certification of such new or modified designs; costs for new or additional materials needed to support the inclusion of energy efficiency measures required by the proposed rule; and costs related to the certification and approval of such materials, among others. Nor does DOE's analysis consider the cost impact of compliance with HUD's lifetime home recall provisions – Part 3282, Subpart I --- which would be significant if HUD adopts the DOE standards as part of the HUD Code.

²⁸ <u>See</u>, 81 Federal Register, No. 117, <u>supra</u> at p. 39783, stating: "DOE is not considering compliance and enforcement in this proposed rule.... As a result, the costs ... resulting from any compliance and enforcement mechanism <u>are not</u> included in the economic impact analysis that is included in this rulemaking." (Emphasis added).

²⁹ See e.g., 86 Federal Register at p. 47759, col.1: "DOE acknowledges that it has not fully enumerated testing and enforcement costs at this time."

3. DOE'S COST "ANALYSIS" IS DEFECTIVE IN THAT IT FAILS CONSIDER THE IMPACT OF SUBSEQUENT IECC CHANGES

By requiring DOE to <u>constantly</u> update manufactured housing standards to keep pace with the "latest version" of the IECC – which is revised every three years without regard to cost-benefit -- EISA not only discriminates against manufactured homebuyers vis-à-vis other types of homes regulated under earlier, less stringent and less costly versions of the IECC,³⁰ but also adds an element of ongoing regulatory uncertainty that will further increase manufacturer compliance costs and the cost of manufactured homes to potential consumers that are not captured within DOE's NOPR cost-benefit analysis.

The significant negative impact of ongoing regulatory uncertainty within regulated industries – and, in particular, on regulated industry participants, such as manufactured housing producers – has been addressed extensively by economists, with studies showing that regulatory uncertainty has a pronounced negative impact on investment, growth, and competitiveness, resulting in both consumer, industry and national-level costs that are not addressed, considered or reflected in DOE's cost-benefit analysis.³¹

These negative impacts, that are not addressed, considered, or accounted-for in the August 26, 2021 SNOPR,³² will not only increase the cost of manufactured housing beyond the amounts projected by DOE – thereby extending DOE-estimated LCC cost-payback timeframes that already exceed the period that significant numbers of manufactured homeowners will remain in their homes – they will also: (1) increase the numbers of lower and moderate-income Americans excluded from the manufactured housing market and homeownership altogether; and (2) reduce the availability of affordable manufactured housing, contrary to the mandate and purposes of existing federal manufactured housing law. The failure to consider such ongoing impacts further demonstrates that DOE's proposed action is arbitrary, capricious and not otherwise in accordance with applicable law.

³⁰ See, Note 14, supra and Attachment 1, hereto.

³¹ See, e.g., "The Impact of Regulation on Investment and the U.S. Economy," The Mercatus Center, The George Mason University, at pp. 3-4. (" [I]nvestment may be temporarily withheld when there is uncertainty about the size and scope of new regulatory initiatives. This is particularly true for investments that cannot be easily reversed -- i.e., reselling capital for its purchase price. Investment in new capital is inevitably accompanied by the hiring of new labor. For firms that must rely on a constant source of financial capital -- i.e., smaller firms, one current source of uncertainty is how the new financial rules will affect their abilities to borrow. About 1/3 of small firms rely on regular borrowing to finance capital. *** Two types of uncertainty can affect decisions by firms to invest: (a) uncertainty about demand for their products demand uncertainty and (b) uncertainty about factor costs -- labor and capital - [i.e.,] factor uncertainty. Major regulations—such as those recently authorized regarding financial services, health care, or greenhouse gas rules—can affect both demand and factor uncertainty. *** [O]ne key type of factor uncertainty is whether firms will have access to credit in the future. Uncertainty about access to credit has a greater impact on firms, small firms in particular, that need continuous access to credit in order to finance investments."

³² Nor was this ongoing regulatory cost factor considered or addressed in the initial DOE June 17, 2016 NOPR.

4. DOE'S COST ANALYSIS FAILS TO CONSIDER THE PROPOSED RULE'S DISPROPORTIONATE IMPACT ON SMALL BUSINESSES

While DOE acknowledges that its proposed rule would have a significant negative impact on the manufactured housing industry – an industry that has seen production contract by 75% since 1998,³³ with corresponding reductions in the number of producers – its cost analysis fails to fully or properly quantify the likely anti-competitive effects of its proposed rule and the resulting highlynegative impacts on industry small businesses and consumers.

DOE alleges in its August 26, 2021 SNPR that its proposed two-tier proposed rule would result in a decline in "industry net present value" of \$276 million to \$325 million, while its untiered so-called "alternative" proposal would result in a reduction of \$340 million to 390 million.³⁴ This "calculation," however, using a government "regulatory impact" model with data inputs provided by DOE, 35 would necessarily be skewed significantly lower by DOE's reliance on unrealistically low IECC regulatory cost impacts -- as demonstrated above and in MHARR's September 15, 2021 MHCC comments -- as well as by DOE's failure to include significant additional regulatory cost elements (i.e., enforcement, testing and regulatory compliance costs and the costs of constantly more stringent IECC standards, as detailed above) in its SNPR cost analysis. Thus, for example, DOE's purchase price impact data under "Tier 2" indicates a consumer level "national" price increase of \$3,914.00 for a single-section home and \$5,289.00 for a double-section home. These amounts, however, are respectively, some 90% and 55% lower than the modifiedcase IECC 2021 cost increases (i.e., \$7,436.00 and \$8,197.00) estimated by MHARR based on the above-described HIRL IECC 2021 cost analysis. Based, again, on the NAHB market exclusion data, purchase price increases of this magnitude would exclude millions more potential purchases than would have been considered by DOE under its GRIM model. Again, therefore, that model would necessarily significantly under-estimate the total impact on manufactured housing industry businesses and, more specifically, the disproportionately negative impact that those cost increases would have on smaller industry businesses.³⁶

Over time, moreover, such disproportionate price impacts will result in further consolidation within an industry that – since its major production decline began in 1998 -- has already seen a substantial reduction in the number of producing companies and an emerging concentration of the manufactured housing market in the hands of a few large corporate conglomerates.³⁷Again, though, DOE's cost-benefit analysis fails to address, consider or account-

³³ <u>I.e.</u>, 2020 annual production of HUD Code homes was 94,390, as contrasted with 373,143 HUD Code homes produced in 1998, according to HUD data.

³⁴ See, 86 Federal Register, supra at p. 47807, col. 1.

³⁵ DOE alleges that its August 26, 2021 SNPR utilized a Government Regulatory Impact Model (GRIM) to assess the industry business impacts of its proposed rule. According to DOE, "the key GRIM inputs are: industry financial metrics, manufacturer production cost estimates, shipments forecasts, conversion costs and manufacturer markups." <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47805, col.1. DOE fails to specify, however, where it obtained that underlying data, the initial source(s) of that underlying data, and what that raw data showed.

³⁶ <u>See</u>, U.S. Small Business Administration, "The Impact of Regulatory Costs on Small Firms," (Nicole V. Crain and W. Mark Crain) September 2010 at p. 8: "[Regulatory] costs per employee thus appear to be at least 36% higher in small firms than in medium-sized and large firms."

³⁷ See, "2015 Home Buyers' Outlook," The Grissim Guides to Manufactured Homes and Land ("[T]the MH industry contraction during the recession brought with it a lot of bankruptcies, closures, mergers and acquisitions. As a

for these negative impacts – and their related costs -- on consumers, the industry and the nation as a whole. This type of extreme negative economic and societal impact was correctly explained in comments previously submitted to DOE by the Mercatus Center of The George Mason University: "[T]his regulation will disproportionately burden small businesses and benefit large manufacturers. This regulation will become an income transfer scheme as small businesses go out of business competing with large manufacturers, giving large manufacturers access to a larger consumer base and increasing their income. This is an income transfer scheme that will produce unintended consequences, including causing an industry to be dominated by a few large firms." And, in fact, specific evidence presented by MHARR in its comments on the 2016 DOE proposed manufactured housing energy rule, detailed apparent coordination by DOE with large industry conglomerates regarding more stringent energy standards.³⁸

DOE's August 26, 2021 SNPR, however, fails to – and, in fact, <u>refuses</u> – to address this disproportionate impact issue and its collateral effects on competition, industry consolidation and consumer prices, stating: "Section 413 of EISA does not require consultation with the [Department of Justice] regarding potential anti-competitive effects of a rule, as would be required for an appliance standard rulemaking. As such, DOE did not consult with DOJ regarding potential anticompetitive impacts of the proposed rule."³⁹This statement, however, conveniently mischaracterizes the issue raised by the expected disproportionate impact of the DOE proposed rule. That issue is not the proposed rule's "anticompetitive impact," per se, but rather, its ultimate impact on consumer prices within the manufactured housing market, which are rising, and would rise even further – and more rapidly as a matter of basic economics – with fewer independent manufacturers.

Insofar as <u>none</u> of these significant cost impacts and factors are considered by DOE in the cost analysis for the August 26, 2021 proposed rule, that rule is fatally deficient, unsupported by proper and sufficient evidence, and legally unsustainable. Moreover, insofar as <u>DOE</u> has the "<u>affirmative burden</u> of promulgating and explaining a non-arbitrary, non-capricious rule,"⁴⁰ DOE's <u>failure</u> to fully and accurately quantify the effect of its proposed rule on small industry manufacturers is, <u>per se</u>, a fatal defect that should invalidate the August 26, 2021 proposed rule.

C. THE \$55,000 DEMARCATION BETWEEN DOE'S PROPOSED <u>"TWO-TIER" STANDARDS IS ARBITRARY AND CAPRICIOUS</u>

DOE's proposed "two-tier" energy standards system is based on a retail purchase price dividing line between the two tiers, with "Tier 1" comprising homes with a retail purchase price

consequence the industry landscape today is markedly different than it was as recently as January 2008 when more than 60 companies nationally were building homes in 195 production facilities around the country. Currently, only 46 active corporations remain, and the number of factory production lines has dropped to 125 (a loss of 70). One upshot of this shake-out is that roughly 68% of the MH industry is now dominated by three major producers and their subsidiaries: Clayton Homes, Inc. (with a market share of 41%), Champion Home Builders, Inc. (15%) and Cavco Industries (12%)."

³⁸ See, MHARR 2016 DOE Comments, supra at pp. 16-17.

³⁹ See, 86 Federal Register, supra at p. 47807, col. 3.

⁴⁰ See, Small Refiner Lead Phase-Down Task Force v. Environmental Protection Agency, 705 F.2d 506 (D.C. Cir. 1983).

up to \$55,000.00 and "Tier 2" comprised of manufactured homes with a purchase price in excess of \$55,000.00. This proposed demarcation between the two "tiers," however, is arbitrary, capricious and not based in fact, and, indeed, is becoming more arbitrary by the day.

First, the \$55,000.00 demarcation, as proposed, is not tied to any discernable relevant statistic, data or fact. While the "average" sales price of a single-section manufactured home was \$53,200.00 in 2019 according to U.S. Census Bureau data,⁴¹that average price rose to \$57,300.00 in 2020 and, at the same rate of growth, would be \$61,712.00 today.⁴²Thus, while DOE's \$55,000.00 demarcation line, in 2019, would have left the "average" single-section manufactured home within its proposed (and supposedly less-costly) "Tier1" energy standards, that same demarcation line, with "average" price increases in both 2020 and 2021 (estimated), would place the "average" single-section home within the <u>much more costly</u> "Tier 2" standards. More specifically, while DOE, as noted above, estimates in its August 26, 2021 SNPR that the \$55,000.00 demarcation point would place 25% of all manufactured homes within "Tier 1," the rate of increase of the "average" cost of a manufactured home in 2020 and 2021 would inevitably reduce that figure well below $25\%^{43}$ -- and likely below 20% -- with correspondingly more severe negative impacts on the manufactured housing market and home ownership in the United States.

Second, <u>all</u> manufactured housing is deemed "affordable housing" under federal law and is specifically protected as "affordable housing" under the 1974 Act as amended. Further, as shown by Consumer Financial Protection Bureau data, the overwhelming majority of manufactured housing is purchased by lower, moderate and fixed-income purchasers. Consequently, a rule that would reserve its <u>only</u> allegedly "affordable" treatment for less than 20% of the total market – a number that would inevitably be further eroded over time based on cost increases paid by manufacturers for construction materials, increased transportation costs and increases in the stringency of the IECC standards – would: (1) violate existing federal law; (2) devastate the manufactured housing market; (3) exclude significant additional numbers of Americans from the benefits of homeownership; and (4) unlawfully discriminate against manufactured housing and manufactured housing consumers.

As a result, DOE's proposed "two-tiered" standards system would <u>not</u> protect the affordability of manufactured housing or its availability to lower and moderate-income consumers as DOE maintains and is inherently arbitrary and capricious. Accordingly, DOE's August 26, 2021 proposed rule, which relies on this arbitrary demarcation, should be rejected by the MHCC. DOE, moreover, <u>at a minimum</u>, should either: (1) increase its "Tier 1" versus "Tier 2" demarcation line substantially; (2) select another legitimate, technically-practicable demarcation mechanism (other than purchase price) that does not exclude the overwhelming majority of the HUD Code market; or (3) develop an un-tiered proposed standard that would legitimately ensure the continuing purchase price affordability of <u>all</u> manufactured housing.

⁴¹ See, Attachment 5 to MHARR's September 15, 2021 MHCC comments.

⁴² The \$57,300.00 average sales price in 2020 represented a 7.7% increase over the 2019 average sales price of \$53,200. A 7.7% increase over \$57,000.00 yields an estimated 2021 average sales price of \$61,712.00.

 $^{^{43}}$ <u>Le.</u>, if the reduction in number of homes with a purchase price below the \$55,000.00 demarcation line mirrored the rate of increase in average purchase price (7.7%), then the proportion of homes under the \$55,000.00 demarcation line would fall to 17.3% (25% - 7.7%).

D. THE PROPOSED STANDARDS ARE TECHNICALLY INFEASIBLE

In addition to the foregoing cost-related issues, there are aspects of the DOE proposed standards that have been flagged by MHARR manufacturers as being technically or practically infeasible and/or erroneous. These include, but are not limited to:

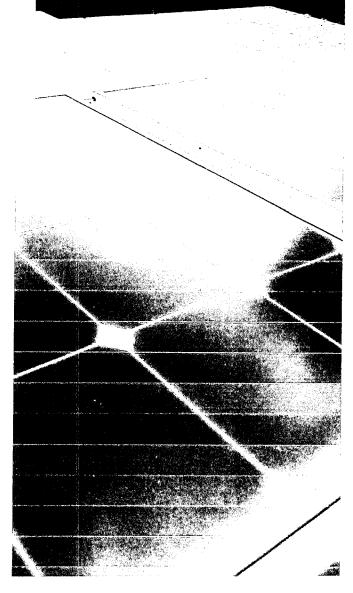
- Re-design of trusses, with corresponding cost increases;
- Increased heel heights resulting in increased shipping height of the home, with increased transportation costs;
- Changes to in-plant assembly procedures, with corresponding costs;
- Changes to other production processes, with corresponding costs;
- Changes in installation parameters, with corresponding costs.

All of these – and other -- issues will be further addressed in MHARR's third set of MHCC comments.

III. <u>CONCLUSION</u>

For all the foregoing reasons, as well as those set forth in MHARR's initial September 15, 2021 comments, and those that will be further delineated in MHARR's third and final set of MHCC comments, the MHCC should reject the proposed manufactured housing energy standards set forth in DOE's August 26, 2021 SNPR as being inappropriate for manufactured housing, excessively costly in violation of applicable law, destructive of the affordable manufactured housing market, not cost-justified, and fundamentally arbitrary, and should submit comments reflecting that rejection (and its bases) to DOE in advance of the existing (or any extended) comment deadline.

Sincerely,


Mark Weiss President and CEO

cc: Hon. Jennifer Granholm
 Hon. Marcia Fudge
 Hon. Shalanda Young (OMB)
 HUD Code Industry Producers, retailers and Communities

Path Forward on Energy and Sustainability to Confront a Changing Climate

EXECUTIVE SUMMARY

ATTACHMENT 1

Concern is growing in communities around the world about the impacts of a changing climate. Leaders are looking for strategies to support increased energy efficiency and reduced greenhouse gas (GHG) emissions to meet their policy goals. At the same time, consumers are seeking more energy efficient and sustainable homes.

Over the past year, the International Code Council has collected and assessed feedback from members and the public to inform a new framework for promoting energy efficiency. The Code Council will build on the technical solutions provided by the International Energy Conservation Code (IECC), International Residential Code (IRC), and International Green Construction Code (IgCC) to create a portfolio of advanced mitigation solutions to battle the impacts of our changing climate. This portfolio will provide a menu of options for jurisdictions, from a strong and increasing set of minimum requirements, to pathways to net zero energy and additional greenhouse gas reduction policies.

The IECC is central to this objective. It establishes a minimum set of requirements and serves as the basis for the formulation of additional tools that meet the policy needs of all levels of governments and the private sector entities that have set energy, GHG emissions and cost saving targets. To meet this objective, the development process for the IECC will use the Code Council's standards development procedures in order to allow for more in-depth scientific and economic deliberations, quicker progress to meeting public and private sector goals, and the development of a broader consensus that will support wider application and adoption.

The International Code Council has a long and respected history in administering a standards development process and is accredited by the American National Standards Institute (ANSI) as a standards developing organization (SDO) that adheres to ANSI's Essential Requirements for openness, balance, consensus and due process. Energy codes developed under the standards process are widely adopted and used across the United States. In fact, every state that adopts energy codes statewide—except two states with homegrown codes—has adopted an energy standard as a or the compliance path to meeting adopted energy codes.

The 2024 IECC will start from the content of the 2021 IECC, building on prior successes including an increase of efficiency requirements by about 40%, or an average of 8% a cycle from 2006 to 2021, allowing the IECC to remain a strong avenue for communities to reach their energy efficiency and sustainability goals globally. The scope and intent of the 2024 IECC and editions moving forward will be updated to reflect the following commitments:

- " The IECC will continue to be updated on a three-year cycle and each edition will increase efficiency over the prior edition;
- The code will include pathways leading to the achievement of zero energy buildings presently and by 2030;
- The code may include non-mandatory appendices incorporating energy efficiency and greenhouse gas reduction resources including for electric vehicle charging, electrification and embodied carbon;
- The code's minimum efficiency requirements will be strengthened each edition based on a balancing test <u>supported</u> by energy efficiency advocates and the building industry and passed by both the U.S. House and Senate;
- The development committees will be informed by insight from a newly established Energy and Carbon Advisory Council made up of public and private sector leaders.

Governments continue to have the ultimate say on whether to adopt or amend model codes.

The IECC Development Committees (Residential and Commercial) will be appointed solely by the Code Council Board of Directors and will represent a variety of perspectives and building science expertise. The committees will include representatives from nine interest categories, including diverse representation within those categories. Recognizing the important role of governments in the adoption and use of the IECC, the framework ensures that government officials continue to have a leading voice. One third of committee membership and the voting committee chairs will represent the government regulatory category. Committee membership will be determined through an open nominations process with no seats reserved for organizations. Committee membership will represent a diversity of climate zones, organization sizes, businesses, and jurisdictions, and a range of experience in building types and energy efficiency strategies.

Committee appointments will strive to achieve an equitable and diverse committee membership that represents racial, gender and socio-economic diversity.

In addition to updates to the IECC, the Code Council will launch a suite of resources that provide communities with a menu of technical and policy resources, which integrate with the International Codes, to address their energy efficiency and GHG reduction goals. Many of these solutions would require the use of on-site renewable generation and energy storage. Specific solutions could address:

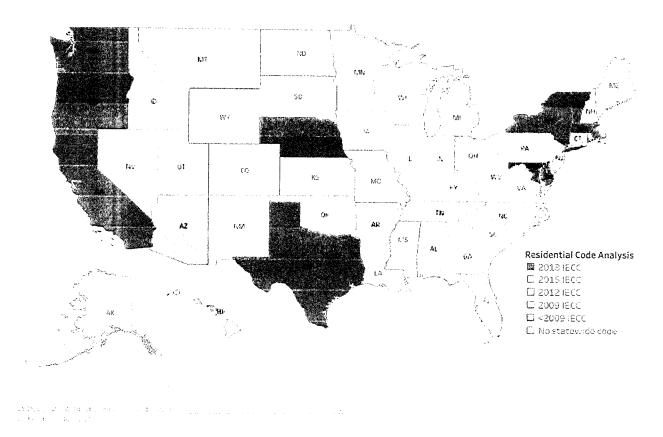
- Electric vehicle charging for all building types
- Electrification and decarbonization
- Zero energy and zero carbon
- Embodied carbon
- Grid interactivity/efficiency
- Performance standards for existing buildings
- Enhancing energy savings through water efficiency and reuse resource
- Integration of on-site renewable energy generation and energy storage to realize greenhouse gas reduction and resilience goals.

The Code Council remains committed to assisting communities in meeting their energy efficiency and greenhouse gas reduction priorities and in educating its members regarding the new process. This effort would be aided by the more than 9,000 departments, agencies, and jurisdictions who are Code Council members, the Code Council's nearly 400 state and local chapters, and a team of government relations staff liaisons that interface daily with state and local officials.

www.lccssfe.org/energy

Page 1 of 5

ATTACHMENT 2


STATUS (/STATUS) 🔻

IMPACTS (/IMPACTS) V

TECHNICAL ASSISTANCE (/TECHNICAL-ASSISTANCE) 🔻

EERE (https://www.energy.gov/eere/office-energy-efficiency-renewable-energy) » Status of State Energy Code Adoption (/status) » Status of State Energy Code Adoption - Residential

Status of State Energy Code Adoption -Residential

Residential Buildings

Table 1. Status of State Energy Code Adoption Map Summary - Residential

State

Current Code (as of 9/30/21) State Map Legend (as of 9/30/21)

State	Current Code (as of 9/30/21)	State Map Legend (as of 9/30/21)
Alabama	2015 IECC with amendments	2009 IECC
Alaska	None statewide	No statewide code
Arizona*	Home rule	< 2009 IECC
Arkansas	2009 IECC with amendments	< 2009 IECC
California	2019 Bldg. Energy Efficiency Standards	2018 IECC
Colorado	Home rule	No statewide code
Connecticut	2015 IECC with amendments	2009 IECC
Delaware	2018 IECC	2018 IECC
District of Columbia	2015 IECC with amendments	2018 IECC
Florida	2018 IECC with amendments	2009 IECC
Georgia	2015 IECC with amendments	2009 IECC
Hawaii*	Home rule	< 2009 IECC
Idaho	2018 IECC with amendments	2009 IECC
Illinois	2018 IECC with amendments	2009 IECC
Indiana	2018 IECC with amendments	2009 IECC
Iowa	2012 IECC with amendments	2009 IECC
Kansas	Home rule	No statewide code
Kentucky	2009 IECC	2009 IECC
Louisiana	2009 IECC	2009 IECC
Maine	2015 IECC with amendments	2015 IECC
Maryland	2018 IECC	2018 IECC

State	Current Code (as of 9/30/21)	State Map Legend (as of 9/30/21)
Massachusetts	2018 IECC with amendments	2018 IECC
Michigan	2015 IECC with amendments	2009 IECC
Minnesota	2012 IECC with amendments	2009 IECC
Mississippi	None statewide	No statewide code
Missouri	Home rule	No statewide code
Montana	2018 IECC with amendments	2009 IECC
Nebraska	2018 IECC	2018 IECC
Nevada	2018 IECC with amendments	2009 IECC
New Hampshire	2015 IECC with amendments	2009 IECC
New Jersey	2018 IECC with amendments	2009 IECC
New Mexico	2018 IECC with amendments	2009 IECC
New York	2018 IECC with amendments	2018 IECC
North Carolina	2015 IECC with amendments	2009 IECC
North Dakota	Home rule	No statewide code
Ohio	2018 IECC with amendments	2009 IECC
Oklahoma	2009 IECC with amendments	2009 IECC
Oregon	2017 Oregon Residential Specialty Code	2018 IECC
Pennsylvania	2015 IECC with amendments	2009 IECC
Rhode Island	2015 IECC with amendments	2009 IECC
South Carolina	2009 IECC	2009 IECC
South Dakota	Home rule	No statewide code

State	Current Code (as of 9/30/21)	State Map Legend (as of 9/30/21)
Tennessee	2009 IECC with amendments	< 2009 IECC
Texas	2015 IECC	2018 IECC
Utah	2015 IECC with amendments	2009 IECC
Vermont	2018 IECC with amendments	2018 IECC
Virginia	2018 IECC with amendments	2009 IECC
Washington	2018 Washington State Energy Code	2018 IECC
West Virginia	2009 IECC	2009 IECC
Wisconsin	2009 IECC with amendments	2009 IECC
Wyoming	Home rule	No statewide code

*A review of the codes in place in jurisdictions across the state indicates that 86% (Hawaii) and 82% (Arizona) of the population is covered by codes at this level.

AVAILABLE DATA

The residential state-level results

(https://www.energycodes.gov/sites/default/files/2021-

09/StateLevelResidentialCodesEnergyUseIndex_FY2021Q4.xlsx) behind the adoption status maps are available.

LEARN MORE...

STATUS OF STATE ENERGY CODE ADOPTION (/STATUS)

STATUS OF STATE ENERGY CODE ADOPTION - COMMERCIAL (/STATUS/COMMERCIAL)

Building Energy Codes Program is a resource of the Department of Energy's Building Technologies Office. Contact (/technical-assistance/help-desk) | Building Technologies Office

(https://www.energy.gov/eere/buildings/building-technologies-office) | Office of Energy Efficiency & Renewable Energy (https://www.energy.gov/eere/office-energy-efficiency-renewable-energy) | Web Policies

(https://www.energy.gov/about-us/web-policies) | Privacy (https://www.energy.gov/about-us/web-policies/privacy)

October 13, 2021

Manufactured Housing Consensus Committee Office of Manufactured Housing Programs U.S. Department of Housing and Urban Development 451 7th Street SW, Room 9166 Washington, D.C. 20410

RE: Notice of a Federal Advisory Committee Meeting Manufactured Housing Consensus Committee (Docket No. FR-6270-N-02)

Dear distinguished members of MHCC,

Clayton Homes is pleased to provide comments regarding the Department of Energy (DOE) Supplemental notice of proposed rulemaking to establish Energy Efficiency Standards for Manufactured housing.

Clayton Homes and its subsidiaries make up a vertically integrated manufactured housing organization with 37 home building facilities, 339 company-owned model home retail centers, financial services operations that provide mortgage services for more than 400,000 customers, and an insurance company that protects over 100,000 families. In addition, our homes are sold through a network of independent retailers and manufactured home communities that total over 1,500.

Clayton believes that home energy cost can be a significant portion of a homeowners' total monthly housing cost and should be consider in the overall affordability of a home. We work to provide home buyers with an energy efficient home that offers the best overall value while balancing initial home cost and operational cost. Although the Federal Standard has served consumers well in providing a minimum standard which balances safety and energy consumption concerns with affordability, we encourage efforts to update energy standards appropriately with a mindfulness of the balance.

As a result of our commitment to provide the lowest combination of construction and operating costs for home buyers; nearly all our homes today are built above current minimum HUD standard energy requirements. Over 65% of our homes built today are either Energy Star certified or certified to provide a level of heating and cooling energy consumption that is at least 30% below a referenced dwelling unit constructed in accordance with the 2003 International Energy Conservation Code (IECC).

The following are standard in our homes and exceed HUD's minimum energy requirements that provide the most significant impact on the home's overall energy efficiency:

- EcoBee Programable thermostats.
- High efficiency furnaces with electronically controlled motors.
- Low E windows.
- Duct air tightness test is performed on all our homes in the factory to verify 5% maximum duct loss.
- All home thermal envelopes are sealed in accordance with Manufactured Housing Energy Star requirements.

Clayton urges the MHCC to call on the DOE to revise its proposed energy requirements to reflect a complete and accurate cost benefit analysis which includes cost of Energy Testing and enforcement.

In considering the proposed energy standards, DOE should take care to evaluate the cost effectiveness of any proposed changes. The cost-effective nature of the proposal can have a significant impact on the ability of a family to afford a home, including reducing the capacity of the industry to build homes. A proposal that results in families being excluded from homeownership because the industry is producing fewer homes and those homes costing significantly more is not a good result.

Based on current material cost and initial cost impact studies, the rule would increase the cost of a 28x68 two section home by about \$610 in climate zone 2 and over \$7,000 in climate zone 3 and these cost do not include cost of energy testing and compliance which could add an additional \$1000. Studies from the Systems Building Research Alliance show that homeowners are unlikely to ever recover this upfront cost in energy savings and home resale price.

The proposed rule is inappropriate for the current Manufactured Housing industry as it does not take into consideration the construction methods, transportation demands and short on-site completion duration unique to manufactured housing. Imposing an energy standard based on the 2021 IECC standards, without a thorough evaluation, will likely impact the affordability of manufactured homes, as well as the industry's ability to produce a sufficient number of homes to support the demand for affordable housing. Below are a few examples of these impacts:

 2021 IECC contains several significant unnecessary costly requirements which add little value to homeowners. One example is that it requires all homes to have HVAC ducts and the whole home tested for air tightness, which many states have removed when adopting the IECC. Studies have shown that on-site energy testing is unnecessary and overly burdensome for manufactured housing which builds tight homes through the process of design and quality controls unique to factory building process. This was acknowledged by DOE in the new Manufactured Housing Energy Star requirements which remove such field test from Energy Star audit requirements. Manufactured Housing's unique short duration between a home arriving on the lot and homeowner occupancy makes timing of field testing unpractical. We encourage DOE to remove the mandatory energy field test requirement and replace it with visual inspection requirements for whole house tightness testing. We encourage DOE to limit duct leakage test requirements to in factory system only and remove costly field test requirements.

- The current insulation shortage, which is projected to continue for a few more years, must also be considered. This rule would require Manufacturer Home's to have significantly more insulation and the demand for fiberglass insulation would overwhelm an already stressed market, resulting in significantly limiting the number of new home starts in America as well as drive up national building cost.
- Clayton builds IRC homes in every state to the energy codes adopted by the State and understand that the 2021 IECC, which the DOE rule has been based, has not been adopted by any States. Thirteen states have adopted parts of the 2018 IECC but nineteen States are on the 2012 IECC or an earlier version. Requiring manufactured housing to meet a higher and more costly standard than site build homes is contrary to the purpose of the HUD code of protecting the quality, durability, safety, and <u>affordability</u> of manufactured homes.
- Please see Appendix A for complete list of changes that we would like to see made to the proposed rule.

One of the tenets of the National Manufactured Home Construction and Safety Standards Act (NMHCSS Act) is the importance of ensuring that manufactured housing remains an affordable housing option for all consumers considering homeownership. The International Code Council (ICC) does not have a requirement to take into consideration cost or impact while writing model code such as the 2021 IECC. States and local authorities consider fitness of code for the State when considering code adoption. Therefore, it's important to note that the 2021 IECC code has not been adopted by any States and many States remove by State amendments numerous cost prohibitive sections of IECC while adopting. To simply apply the 2021 IECC without proper evaluation of the cost impact to homebuyers would potentially penalize manufactured homes which have a smaller footprint and consume less energy than sitebuilt homes. Energy standards should be based on total energy use per household rather than per square foot of living spaces and should encourage the use of smaller homes.

• The HUD energy standards haven't been significantly updated since 1994 and we believe moving to the proposed 2021 IECC based standard is too big of a jump for the industry to absorb in one code cycle. ICC updates building codes such as the IECC in three-year cycles and States normally consider adoption on similar three to 5 year cycles. This regular Candance allows both building components and home builders to slowly adjust to increased requirements.

There are several aspects with the proposed rule that make sense including:

- Keeping the current three thermal zones contained within the Manufactured Home Construction and Safety Standards.
- The two-tiered approach effort to mitigate significant cost impact on affordable homes. We encourage DOE to keep affordability in mind for both tiers.
- Providing both a prescriptive insulation path and a Total Building U value path.

We believe that the best outcome for developing a better energy standard would be for the DOE to work with HUD and the Manufactured Housing Consensus Committee (MHCC) to evaluate the energy standard improvements that will add the most value in energy savings and account for the cost impact to consumers.

The proposal should also consider the extraordinary market we are in, where the best first step could be to improve the minimum standards that are currently in place that are workable in the current market environment, and then continue to evaluate additional improvements to the standards overtime.

Clayton Homes supports sensible conservation efforts which consider the best overall value for home buyers that balance initial home cost and operational cost. Overly burdensome regulations that increase the cost of a manufactured home and price many consumers out of homeownership is not the answer. Even modest home price increases will have a disproportionate impact on lower income communities, who face the most significant burden in obtaining affordable homeownership. Clayton encourages DOE to work with HUD and the MHCC on the development of energy standards that not only encourages innovation and conservation, but also eliminates regulatory barriers that impede consumer access to safe, affordable manufactured housing.

Best regards,

John Weldy, P.E. Vice President of Engineering

Appendix A

Changes that we would like to see in the Proposed rule include:

- This is a significant rule change and as such, we recommend an implementation date of 3 years after publishing of final rule.
- Although we agree with keeping existing HUD climate zones; we encourage DOE to lower insulation package requirements in zone 3 to better align with HUD map. As an example, Virginia which is in HUD climate zone 3 is in climate zone 1 in the IECC and it's unfair to pentiles VA with the higher insulation requirements as North Dakota.
- Revising definition of Whole-house mechanical ventilation system in 460.1 to: "Exhaust system, supply system, or combination thereof that is designed to mechanically exchange indoor air with outdoor air when operating continuously or through a programmed intermittent schedule to satisfy the whole house ventilation rates." Proposed definition is from the 2021 IECC.
- Change the tier retail list price from \$55,000 to \$75,000 for a single section and \$140,000 for a Multi-section home to better reflect today affordable housing market.
- In section 460.102 we recommend revising exterior wall insulation to R-11 and increasing ceiling insulation to R25 in tier 1 zone 1 & 2. Allowing use of R-11 would provide valuable flexibility in current restricted fiberglass insulation market.
- Revise 20+5 wall R values to 21 or 13+5. This is consistent with the 2015 IECC and would provide mfg. option to avoid continuous insulation sheathing which would reduce home rigidity which could cause transportation issues. Would rather see ceiling levels increased to equal same overall insulation levels.
- Change 460.102(a)(3) to "..... R-21 batt insulation and R-11 blanket..." because R-11 blanket is more readily available.
- Add from the 2021 IECC R402.3.3] 460.102(a)(6) & (7) as follows:
 - (6) [R402.3.3] Glazed fenestration exemption. Not greater than 15 square feet (1.4 m2) of glazed fenestration per dwelling unit shall be exempt from the U-factor and SHGC requirements in Section R402.1.2. This exemption shall not apply to the Total UA alternative in Section R402.1.5.

(7) [R402.3.4] Opaque door exemption. One side-hinged opaque door assembly not greater than 24 square feet (2.22 m2) in area shall be exempt from the U-factor requirement in Section R402.1.2. R402.1.5.

• Revise Table 460.102-5 & 6

- Tier 1:Change zone 1 total Uo to 0.098 for single and 0.096 for multisectional, zone 2 total Uo of 0.081 for singles and 0.079 for multisectional and the zone 3 total Uo of 0.076 for singles and 0.073 for multi-sectional.
- Tier 2:Change zone 2 total Uo to 0.076 for single and 0.073 for multisectional and the zone 3 total Uo of 0.067 for singles and 0.064 for multi-sectional.

These energy levels better align with current Energy Star requirements and provide an aggressive first step in enhancing energy conservation in manufactured homes.

- Revise 460.104 by adding the following at the end of the sentence in Table 460.103....over the top of the attic insulation where the insulation is restricted.
- Revise based on R403.3.6 of 2021 IECC as follows:

1. Rough-in test: The total leakage shall be less than or equal to 4.0 cubic feet per minute (113.3 L/min) per 100 square feet (9.29 m2) of conditioned floor area where the air handler is installed at the time of the test. Where the air handler is not installed at the time of the test, the total leakage shall be less than or equal to 3.0 cubic feet per minute (85 L/min) per 100 square feet (9.29 m2) of conditioned floor area.

2. Postconstruction test: Total leakage shall be less than or equal to 4.0 cubic feet per minute (113.3 L/min) per 100 square feet (9.29 m2) of conditioned floor area.

3. Test for ducts within thermal envelope: Where all ducts and air handlers are located entirely within the building thermal envelope, total leakage shall be less than or equal to 8.0 cubic feet per minute (226.6 L/min) per 100 square feet (9.29 m2) of conditioned floor area.

- Revise §460.202 (b)(3). To following: Homeowners manual should include recommendation that homeowners program thermostat with a heating temperature set point no higher than 70 °F (21 °C) and a cooling temperature set point no lower than 78 °F (26 °C).
- Remove the following sentence from 460.203: Where service hot water systems are installed by the manufacturer, the manufacturer must ensure that any maintenance instructions received from the service hot water system manufacturer are provided with the manufactured home.
 - Typical water heater instructions do not include maintenance instructions and such when available are readily available on-line.

October 13, 2021

Manufactured Housing Consensus Committee Office of Manufactured Housing Programs U.S. Department of Housing and Urban Development 451 7th Street SW, Room 9166 Washington, D.C. 20410

RE: Notice of a Federal Advisory Committee Meeting Manufactured Housing Consensus Committee (Docket No. FR-6270-N-02)

Dear Sir/Madam:

The Manufactured Housing Institute (MHI) is pleased to provide feedback to the U.S. Department of Housing and Urban Development (HUD) and the Manufactured Housing Consensus Committee (MHCC) in response to the request for public comments in preparation for the MHCC's upcoming teleconference on October 20, 2021, about the Department of Energy's (DOE) supplemental notice of proposed rulemaking titled "Energy Conservation Program: Energy Conservation Standards for Manufactured Housing."

MHI is the only national trade association that represents every segment of the factory-built housing industry. Our members include home builders, suppliers, retail sellers, lenders, installers, community owners, community operators, and others who serve the industry, as well as 48 affiliated state organizations. In 2020, our industry produced nearly 95,000 homes, accounting for approximately nine percent of new single-family home starts. These homes are produced by 34 U.S. corporations in 138 plants located across the country. MHI's members are responsible for close to 85 percent of the manufactured homes produced each year.

To reiterate MHI's position from its previous two comment letters and remarks, the DOE's proposed rule is fundamentally flawed, both because it does not follow an accurate cost-benefit analysis as the statute requires and because it ignores the importance of HUD as the primary regulator of construction and safety standards for manufactured homes. As the MHCC concludes its final meeting on this proposed rulemaking, MHI strongly urges Committee members to continue to take the following issues and concerns into consideration.

Reliance on the International Energy Conservation Code

One of the tenets of the National Manufactured Housing Construction and Safety Standards Act (NMHCSS) is the importance of ensuring that manufactured housing remains an affordable housing option for all consumers considering homeownership. The Energy Independence and Security Act of 2007 (EISA) states "energy conservation standards established under this section shall be based on the most recent version of the International Energy Conservation Code (including supplements), **except in cases in which the Secretary finds that the code is not cost effective**, or a more stringent standard would be more cost-effective, based on the impact of the code on the purchase price of manufactured housing and

Page 2 Submission by the Manufactured Housing Institute October 13, 2021

on total life-cycle construction and operating costs."¹ Thus, the reasoning behind requiring DOE to consider the unique aspects and construction techniques of the manufactured housing industry.²

The International Code Council (ICC) is a member-focused association that develops model building codes and standards that are used in the design and construction of safe, sustainable, affordable, and resilient structures.³ The ICC's International Energy Conservation Code (IECC) is a baseline energy standard with guidelines for mechanical systems, lighting systems, service water heating systems, and building envelope, among other areas.

EISA directs DOE to establish energy conservation standards for manufactured housing based on the most recent version of the IECC (unless it is found to be not cost effective), which was published in January 2021. To date, no state has adopted the 2021 IECC standards and the vast majority of states are using amended versions of the 2009, 2012 or 2015 IECC, and eight states recognizes no uniform energy standard at all in their state's building code for site-built homes. While the IECC is respected in the construction industry, it was developed over many years for utilization in both site-built residential homes and commercial buildings and was never intended nor designed to be implemented in the manufactured housing sector. Given that the IECC essentially ignores all the construction aspects unique to manufactured housing, it is an inappropriate code for attempted enforcement upon the manufactured housing industry and could potentially cause factory closures, the loss of thousands of jobs, and an immediate affordable housing crisis for one of the largest sectors in the housing market. The most appropriate code to utilize to update energy standards for manufactured homes is the HUD Code.

Feasibility of DOE's Proposed Changes

If the DOE attempts to enforce the IECC, a code originally developed and intended for commercial and site-built residential buildings, to propose these changes, manufacturers will have to redesign all their current floor plans to accommodate the changes resulting in the possible elimination of some home features. Further, it raises potential issues with certain components and materials that are currently being used in the home production.

For example, the proposed rulemaking requires continuous insulation which is problematic due to the required changes in design, associated costs, and need for products that do not exist. The increase in unit width due to the addition of continuous foam will require a reduction in the structural floor width equal to the thickness of the insulation. This will require redesign of the chassis system, trusses, and retooling of fixtures and jigs within the plant. Any reduction in interior width due to increases in exterior width, will eliminate or require significant redesign of many single section homes that incorporate a bathroom with adjacent hallway that are already at the minimum widths permitted under the HUD Code. Furthermore, standard doors for manufactured homes are designed for overall wall thickness of 4 or 6 inches and increasing the thickness will require the use of extension jambs or development of new products to accommodate increased wall widths. All these changes will ultimately increase the cost of the home and the price the consumer pays for it. Further, all these changes will take time to implement.

Transportation Concerns

Several of the proposed changes in the rule appear to focus on changes to the building thermal systems which will affect the overall shipping height and width of a home. By increasing the truss heel height, increasing floor joist depth, and adding insulation outside of the studs, the overall shipping envelope will change. In some cases, this change could be significant. For example, the additional height

¹ 42 U.S.C. 17071(b)(1).

² Id. at 17071(b)(2)(A).

³ International Code Council, https://www.iccsafe.org/about-icc/overview/about-international-code-council/ (accessed October 12, 2021)

Page 3 Submission by the Manufactured Housing Institute October 13, 2021

could prevent shipping a home into an area of the country with low bridges resulting in consumers having to settle for a different style of home, or more than likely, being forced out of the housing market due to a lack of affordable housing. Further, an additional escort or pole car may be required to accompany the home that goes beyond maximum width or height, which could add thousands of dollars to the price of the home for the consumer.

Ownership Related Costs

MHI urges the MHCC to call on the DOE to revise its proposed energy requirements to reflect a complete and accurate cost benefit analysis which is required by the Energy Independence and Security Act of 2007 (EISA).

The DOE's proposal is based on improper calculations and methodologies including underestimating the current costs of homes and the costs of the new materials to construct them, and not considering the cost of testing procedures and compliance. Further, the DOE significantly underestimates the fact that the first buyer of an energy efficient manufactured home would likely never reap the economic benefit. Based on MHI's industry data, buyers usually sell their homes within seven to ten years of purchase. Consequently, as result of the DOE's proposal, homeowners will not realize incremental value for energy features that increase a home's purchase or sale price. Instead, savings, if any, could only be realized by subsequent homeowners.

At the efficiency levels proposed by the DOE in its recent rulemaking, MHI's survey of manufacturers found that it is unlikely that a buyer purchasing a new home and financing 90 percent of the purchase price would even recover these upfront costs at a future sale. Instead, the DOE's proposal would likely yield a negative return over the ownership period. While several reasons contribute to this, including purchase price and availability of financing options, the fact that homebuyers usually sell their homes within the first seven years of purchase is the most relevant.

Using the DOE's assumptions of cost and location as outlined in the Technical Support Document, which assumes a 30-year mortgage which is not the norm for manufactured housing, MHI conducted a cost-benefit analysis using more realistic financing options that are being utilized in the market today. Assuming a down-payment of 10 percent, an interest rate of nine percent – which is at the high end of today's mortgage rates - a loan term of 20 years, and a tenancy period of 10 years, MHI's costbenefit analysis found that the DOE's proposal will add at a minimum almost \$1,000 to the cost of a new single-section manufactured home and up to \$5,500 to the cost of a multi-section home depending on location (See Appendix I). Such a price increase would be financially devasting for homebuyers looking to finance the purchase of a manufactured home.

It is important to note that the only place that MHI's analysis shows a savings is in Fairbanks, Alaska, where the savings is only \$369 after ten years. In 2020, Alaska had only 64 homes shipped to the state and as of July 2021 only five homes been shipped there. Further, many of the locations selected by the DOE for its analysis are not locations where manufactured housing is prevalent.

Given these facts, any new energy conservation standard must avoid creating a scenario where the upfront increase to the purchase price of a home prices many consumers out of the market, even if those upfront costs could be amortized over the duration of the homeowner's tenancy and recouped over time.

Compliance, Enforcement and Testing

As MHI has previously stated, it is unnecessary for the DOE to develop a new enforcement mechanism because the HUD Code is an already-established enforcement mechanism that mandates a uniform standard for design, construction, and installation, including federal requirements for safety, durability, and energy efficiency. While MHI recognizes that the DOE has the authority to develop an Page 4 Submission by the Manufactured Housing Institute October 13, 2021

energy conservation standard for manufactured housing, it should be developed in coordination with HUD to ensure that any proposed rules are integrated into the HUD Code for enforcement. Failure to partner with HUD would result in complicated, overlapping requirements that will only increase manufacturing costs, hurting existing homeowners and prospective homebuyers. Further, the proposed rule does not include testing requirements for each of the systems being modified. Determining the impact of a system change without knowing the testing parameters is impossible. DOE must not propose a rule without including the required testing requirements, so any analysis can include the true impact.

MHI has included preliminary responses to the thirty questions posed by the DOE in the rulemaking that the Department is seeking comments on (Appendix II), as well as noted below additional issues the MHCC must consider as it continues to review the proposed rule including:

- 1. The DOE energy standards fail the EISA statutory requirement to use the IECC Code "except in cases in which the code is not cost effective." The result is manufactured housing will be less affordable, due to large increases in home sale prices and operating cost increases that exceed energy savings.
- 2. The \$55,000 low-income price cap threshold for streamlined energy efficiency requirements should be eliminated (or significantly increased). Failure to do this would result in DOE failing to accomplish its stated goal of protecting low-income homebuyers from steep price increases resulting from the new standards.
- 3. Energy standards fail to "take into consideration the design and factory construction standards" of manufactured homes and ignore the primacy of manufactured housing construction standards established under the 2000 Manufactured Housing Improvement Act.
- 4. Energy standards were developed without complying in any meaningful way with the EISA statutory requirement to consult with HUD resulting in standards that ignore the real-world impact on manufactured homeownership and differences between the IECC and HUD Code.
- 5. Energy standards ignore the large number of homebuyers that will no longer be able to buy a manufactured home, because they no longer qualify for an FHA, Fannie Mae, or Freddie Mac mortgage loan, due to the impact of increased mortgage payments on debt-to-income ratios.

While MHI and its members will always support sensible conservation efforts, overly burdensome regulations that even modestly increase the cost of a manufactured home will price many consumers out of homeownership. This increase will have a disproportionate impact on minority communities, who face the most significant burden in obtaining affordable homeownership and would be in direct contrast to the Administration's goal of achieving racial equity in homeownership. MHI stands ready to work with DOE, HUD and the MHCC on the development of realistic and achievable energy standards that not only encourages innovation and conservation, but also eliminates regulatory barriers that impede consumer access to safe, affordable manufactured housing.

Sincerely,

Just Gooch

Lesli Gooch, Ph.D. Chief Executive Officer

Page 5 Submission by the Manufactured Housing Institute October 13, 2021

Appendix I - Cost Benefit Analysis

The tables below provide Life Cycle Cost results for the DOE proposed rule. The figures offer a glimpse of the benefits and costs for a homebuyer purchasing either a single or two section home. The inputs for location selection, average home cost, increase in home cost related to the energy investment and resultant monthly energy savings match DOE's assumptions contained in the Technical Support Document (TSD). The table sums the major costs and benefits as experienced by the buyer over a 10-year, average occupancy period to yield a net benefit (cost) including incremental mortgage payment, added down payment and monthly energy savings. A negative value indicates that the buyer can expect to lose money on the energy investment making the home less affordable. For example, a purchaser of a single section home in Phoenix, AZ, can on average expect to experience a net cost of nearly \$4,900 over the 10-year period of occupancy. Other assumptions made in generating the tables are provided below. Note: all figures are expressed in current dollars. Further, it is assumed that the buyer does not realize an incremental price increase associated with the energy measures at the time of sale, an assumption that is based on a lack of evidence that energy features can demand a higher home price.

Assun	nptions
Down payment	10%
Principal	90%
Mort. interest rate	9%
Loan term (yrs)	20
Occupancy term (yrs)	10
Principal recapture rate	0%

Accomptions

			Single Section Home								
HUD Standards Climate Zone	Sample Locations	Average home cost (DOE)	Increase in home cost (DOE)	Percent increase in cost	Down payment	Inc. in mortgage	Inc. monthly mort. pay.	Energy savings (\$/mth) (DOE)	Net Mthly. Savings/ Cost	Principal repayment	Net benefit (cost)
1	Miami	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$2 0	(\$1)	\$1,646	(\$2,010)
1	Houston	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$24	\$3	\$1,646	(\$1,493)
1	Atlanta	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$ 29	\$8	\$1,646	(\$891)
1	Charleston	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$ 26	\$5	\$1,646	(\$1,340)
1	Jackson	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$ 28	\$7	\$1,646	(\$1,048)
1	Birmingham	\$57,300	\$2,574	4.5%	\$257	\$2,317	\$21	\$ 27	\$7	\$1,646	(\$1,106)
2	Phoenix	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$ 28	(\$11)	\$3,081	(\$4,897)
2	Memphis	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$32	(\$7)	\$3,081	(\$4,432)
2	El Paso	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$30	(\$9)	\$3,081	(\$4,658)
2	San Francisco	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$23	(\$17)	\$3,081	(\$5,543)
2	Albuquerque	\$57,300	\$4,820	8.4%	\$482	\$4,338	\$39	\$3 0	(\$9)	\$3,081	(\$4,666)
3	Baltimore	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$33	(\$4)	\$2,978	(\$3,967)
3	Salem	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$26	(\$12)	\$2,978	(\$4,892)
3	Chicago	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$34	(\$4)	\$2,978	(\$3,930)
3	Boise	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$28	(\$10)	\$2,978	(\$4,605)
3	Burlington	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$35	(\$3)	\$2,978	(\$3,812)
3	Helena	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$36	(\$2)	\$2,978	(\$3,686)
3	Duluth	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$ 49	\$11	\$2,978	(\$2,144)
3	Fairbanks	\$57,300	\$4,659	8.1%	\$466	\$4,193	\$38	\$69	\$32	\$2,978	\$369

Page 7 Submission by the Manufactured Housing Institute October 13, 2021

			Multi Section Home								
HUD Standards Climate Zone	Sample Locations	Average home cost (DOE)	Increase in home cost (DOE)	Percent increase in cost	Down payment	Inc. in mortgage	Inc. monthly mort. pay.	Energy savings (\$/mth) (DOE)	Net Mthly. Savings/ Cost	Principal repayment	Net benefit (cost)
1	Miami	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$33	(\$1)	\$2,648	(\$3,134)
1	Houston	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$ 40	\$6	\$2,648	(\$2,313)
1	Atlanta	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$ 48	\$15	\$2,648	(\$1,306)
1	Charleston	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$42	\$8	\$2,648	(\$2,065)
1	Jackson	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$ 46	\$12	\$2,648	(\$1,597)
1	Birmingham	\$108,500	\$4,143	3.8%	\$414	\$3,729	\$34	\$45	\$11	\$2,648	(\$1,696)
2	Phoenix	\$108,500	\$6,167	5.7%	\$ 617	\$5,55 0	\$50	\$4 0	(\$10)	\$3,942	(\$5,714)
2	Memphis	\$108,500	\$6,167	5.7%	\$ 617	\$5,550	\$50	\$45	(\$5)	\$3,942	(\$5,170)
2	El Paso	\$108,500	\$6,167	5.7%	\$ 617	\$5,550	\$50	\$42	(\$8)	\$3,942	(\$5,496)
2	San Francisco	\$108,500	\$6,167	5.7%	\$ 617	\$5,550	\$50	\$31	(\$19)	\$3,942	(\$6,835)
2	Albuquerque	\$108,500	\$6,167	5.7%	\$617	\$5,550	\$5 0	\$42	(\$8)	\$3,942	(\$5,535)
3	Baltimore	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$45	(\$2)	\$3,732	(\$4,584)
3	Salem	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$34	(\$14)	\$3,732	(\$5,949)
3	Chicago	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$46	(\$2)	\$3,732	(\$4,502)
3	Boise	\$108,500	\$5,839	5.4%	\$ 584	\$5,255	\$47	\$37	(\$10)	\$3,732	(\$5,508)
3	Burlington	\$108,500	\$5,839	5.4%	\$ 584	\$5,255	\$47	\$47	(\$0)	\$3,732	(\$4,364)
3	Helena	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$48	\$0	\$3,732	(\$4,271)
3	Duluth	\$108,500	\$5,839	5.4%	\$584	\$5,255	\$47	\$ 66	\$18	\$3,732	(\$2,105)
3	Fairbanks	\$108,500	\$5,839	5.4%	\$ 584	\$5,255	\$47	\$94	\$47	\$3,732	\$1,292

Appendix II - Issues on Which DOE Requests Comment

1. DOE invites comment on whether (1) the manufacturer's retail list price threshold for Tier 1 under the tiered proposal is appropriate, (2) the untiered proposal in this SNOPR is cost-effective, generally, and (3) the untiered proposal is cost-effective for low-income consumers.

Creating a dollar threshold for Tier 1 demonstrated a fundamental lack of understanding of the manufactured housing industry. Further, the threshold for Tier 1 is not appropriate. To begin with, manufacturers do not provide a suggested retail price for homes as prices can vary from location to location. Thus, it is up to the retailer to determine the prices of the homes they are selling. For example, under this structure, a manufacturer could have a home floor design approved for Tier 1 only, but when working with the retailer the consumer decides to upgrade some of features such as installing a granite countertop. Any upgrades at the time of purchase, could potentially move that home into Tier 2 which would be outside of the manufacturers control.

Moreover, the setting of \$55,000 is arbitrary and relates affordable housing ONLY to the manufactured housing market. To determine if a home is affordable, it is necessary to consider the entire housing market. Manufactured homes at any price point provide a significant source of affordable housing – with the average price of a new manufactured home being \$87,000 compared to \$308,597 for a new site-built home not including land.⁴

2. DOE welcomes comment on approaches for testing, compliance and enforcement provisions for the proposed standards and alternative proposal. DOE also welcomes comments and information related to potential testing, compliance and enforcement under the current HUD inspection and enforcement process, and potential costs of testing, compliance and enforcement of the proposed standards and alternative proposal in this document.

MHI has significant concerns that testing was not included in this proposal, and finds it challenging to consider the costs and impacts of a number of the proposed changes without knowing what the testing protocols will be. All costs imposed by the proposed rule must be factored, and enforcement and testing are parts of that cost. For example, will the duct testing require every unit to be tested thus requiring each manufacturer to hire one individual to test the ducts in line? Additionally, each double wide will need to be tested on-site which will cost around \$1,000 per unit, assuming the duct system passes the first time. What happens if a duct system fails the testing on-site? Additional costs will be incurred with bringing the duct system into compliance and then another site test will be required.

Furthermore, it is unnecessary for the DOE to develop a new enforcement mechanism because the HUD Code is an already-established enforcement mechanism that mandates a uniform standard for design, construction, and installation, including federal requirements for safety, durability, and energy efficiency. While MHI recognizes that the DOE has the authority to develop an energy conservation standard for manufactured housing, it should be developed in coordination with HUD to ensure that any proposed rules are integrated into the HUD Code for enforcement.

3. DOE requests comment on the use of a tiered approach to address affordability and PBP concerns from HUD, other stakeholders, and the policies outlined in Executive Order 13985. DOE also requests comment regarding whether the price point boundary between the proposed tiers is appropriate, and if not, at what price point should it be set and the basis for any alternative price points. DOE also requests comment on its assumptions regarding the use of high-priced loans (*e.g.*, chattel loans) by low-income purchasers, or other purchasers, of manufactured housing.

Manufactured housing is a critical component of the success of Executive Order 13985, officially titled "Advancing Racial Equity and Support for Underserved Communities." According to the Urban Institute, "the

⁴ 2020 U.S. Census Bureau's Manufactured Housing Survey.

Page 9 Submission by the Manufactured Housing Institute October 13, 2021

gap in the homeownership rate between black and white families in the U.S. is bigger today than it was when it was legal to refuse to sell someone a home because of the color of their skin." Addressing systemic barriers to minority homeownership is imperative and increasing the supply of quality affordable housing must be an integral part of the effort. This is where manufactured housing comes in. With the average cost of a new manufactured home itself around \$87,000, it is not uncommon for the purchase of a manufactured home to be less expensive than the option of renting.⁵ And unlike other affordable homeownership options, which are often aging housing stock in need of extensive improvements and rehabilitation, a family can attain homeownership in a brand-new home that has the latest innovations, energy efficient features, and modern floor plans and amenities. Any federal regulations that impact the affordability of housing could make it even harder for minority homeowners to access homeownership.

4. DOE also requests comment on alternate thresholds (besides price point) to consider for the tiered approach, including a size-based threshold (*e.g.*, square footage or whether a home is single- or multisection). DOE requests comment on the square footage and region versus sales price data provided in the notice (from MHS PUF 2019) and how that data (or more recent versions of that data) could be used to create either a size-based or region-based threshold instead. DOE further requests input on whether there should be single national threshold as proposed, or whether it should vary based on geography or other factors, and if so, what factors should be considered.

Thresholds must be established differently for different regions of the country because the features and amenities in an "affordable" home vary geographically. Further, the pricing for a manufactured home can differ greatly depending on the location of where the home will be sited. For example, below are the average prices of a manufactured home in several states across the country⁶:

- Arizona \$106,800
- California \$118,700
- Colorado \$88,200
- Florida \$89,200
- Texas \$88,200

Rather than price, MHI would urge the DOE to consider other thresholds such as square footage or a measure that differentiates based on location where the home will be sited. Further, from an approval and enforcement standpoint, it is not clear how designs of varying levels of affordability would be distinguished by production inspection primary inspection agencies (IPIAS) and design approval primary inspection agencies (DAPIAS).

5. DOE requests comment on using the AEO GDP deflator series to adjust the manufacturer's retail list price threshold for inflation. DOE requests comment on whether other time series, including those that account for regional variability, should be used to adjust manufacturer's retail list price.

While MHI does not believe a price threshold is at all appropriate, if used there absolutely needs to be an index to increase the price over time if a price tier is used. The proposed rule should establish the Federal agency tasked with providing the annually adjusted threshold values. Whether it is HUD or the DOE, a single adjusted value must be provided to ensure consistency across the industry.

6. DOE requests comment on whether a one-year lead time would be sufficient given potential constraints that compliance with the DOE standards may initially place on the HUD certification process, and whether a longer lead time (e.g., a three-year lead time) or some other alternative lead-time for this first set of standards (e.g., phased-in over three years, with one-year lead-times thereafter) should be provided.

⁵ 2020 U.S. Census Bureau's Manufactured Housing Survey.

⁶ 2020 U.S. Census Bureau's Manufactured Housing Survey.

Page 10 Submission by the Manufactured Housing Institute October 13, 2021

When DOE makes changes to appliance standards there is generally a 5-year compliance period. Given that the process for manufacturing homes is at least as complex as appliances, this same time period should apply. If the proposed rulemaking is finalized as written, implementing the changes would require manufacturing plants to do a complete overhaul of their systems and processes. Further, every home design currently being utilized – of which there are thousands – would need to be redesigned and reapproved, further slowing down the process.

7. DOE requests comment on its understanding of the definitional changes in the 2018 IECC and the 2021 IECC. DOE also requests comments on its changes to the proposed definitions as compared to those proposed in the June 2016 NOPR.

MHI recommends revising the definition of whole-house mechanical ventilation system to: "Exhaust system, supply system, or combination thereof that is designed to mechanically exchange indoor air with outdoor air when operating continuously or through a programmed intermittent schedule to satisfy the whole house ventilation rates." As currently proposed, the definition would include all exhaust fans including bath and range hoods – systems we do not believe are intended to be included. Further, MHI strongly encourages DOE to review the definition of "thermal distribution efficiency" and "renewal energy certificate."

8. DOE requests comment on incorporating by reference ACCA Manual J, ACCA Manual S, and "Overall U-Values and Heating/Cooling Loads–Manufactured Homes" by Conner and Taylor.

Incorporation of these manuals is an example of trying to use a site-built code for manufactured housing that just does not work as outlined below.

ACCA Manual J analysis requires knowledge of the orientation of the home with respect to the sun for cooling load analysis. Because the orientation of the home is often unknown until installed, the proposed rule must establish a default orientation, such as the front door is assumed to face south.

ACCA Manual S establishes sizing limits for heating and cooling equipment, these limits presume that thermal loads are established for a specific location and specific building orientation. The variation in design parameters within a single thermal zone exceeds the sizing limits of ACCA Manual S. The proposed rule must establish alternate criteria for using ACCA Manual S where the design parameters vary within a thermal zone.

Current equipment sizing methods are not based on Manual J or Manual S. The use of this software, as proposed, will add additional time and cost for each model plan submission.

The rule must establish a threshold for requiring a revised Manual J or Manual S analysis. For example, where a home model has options that affect the glazing area or insulation value, are distinct Manual J and Manual S analysis required for each possible option?

If equipment sizing is limited by Manual S, under the proposed rule homes can only be placed in their respective thermal zones because placing a home in a zone for which it was not designed would violate the sizing limits of Manual S. For example, under the current standard a Zone II home can be placed in Zone I, as Zone II is considered more restrictive. However, under the new standard, this common practice would not be permitted because equipment sized for Zone II would be oversized for Zone I and violate the proposed rule. This would restrict current sales practices in the industry especially for retailers located near the Zone boundaries.

9. DOE requests comment on basing the climate zones on the three HUD zones instead of the June 2016 NOPR-proposed four climate zones, or other configuration of climate zones. DOE further requests input on whether energy efficiency requirements should be based on smaller geographic areas than provided with the 3 or 4 zone model.

MHI supports utilizing the current HUD climate zones for the purpose of this rulemaking.

10. DOE requests comment on the Tier 1 energy conservation standards, which would be applicable to manufactured homes with a manufacturer's retail list price of \$55,000 or less. DOE also requests comment on the proposed energy conservation standards based on the most recent version of the IECC for the Tier 2 and untiered standards and the consideration of R-21 sensitivity for exterior wall insulation for climate zones 2 and 3.

Per our response to Question 1, we do not support a tiered approach based on retail price.

11. DOE requests comment on the additional energy efficiency requirements from the 2021 IECC and whether they should apply to manufactured homes, including those that DOE has initially considered as not applicable to manufactured homes. If so, DOE requests comment on how these requirements would apply and the costs and savings associated with these requirements.

While the IECC is respected in the construction industry, it was introduced as a standard specific to commercial and site-built residential housing with no input from the manufactured housing industry. Given that the IECC essentially ignores all the construction aspects unique to manufactured housing, requiring the industry to comply with a building code that was developed without the benefit of our industry's knowledge or participation is not an appropriate solution. Thus, an integration process of individual evaluation and strategic merging of any increased energy standards would be a much more prudent approach rather than attempting a "broad scale, one size fits all" approach as is currently being suggested. For that to work, the most appropriate code to utilize to update energy standards for manufactured homes is the HUD Code.

12. DOE requests comment on the proposal to not require that exterior ceiling insulation must have uniform thickness or a uniform density.

MHI agrees that manufactured homes should NOT have to require uniform thickness of installation. Installing insulation with a nonuniform thickness is required to construct most manufactured homes due to shipping height restrictions and the need to minimize truss heel height. Below is further supporting information as to why MHI supports not requiring uniform thickness based on the DOE proposal.

- The loose fill spray applied ceiling insulation was assumed to be R-3.1 per inch in the DOE analysis. Therefore, as the required R-value for the ceiling insulation is increased the required depth will also increase.
- Due to shipping restrictions across the US, most manufacturers limit the truss heel height to allow the most conservative shipping heights.
- When the heel height is less than the depth of insulation required, a compressed area of insulation occurs at the eave areas. The deeper the required insulation, further the compressed area extends toward the center of the home.
- Because of the compressed area at the eave, the manufacturers typically increase the depth toward the center of the home to provide an average depth that meets the requirements.
- Another issue with the ceiling insulation is that approximately 30 percent of homes produced have a "vaulted" ceiling instead of "flat" ceiling as assumed in the DOE proposal. The insulation depths that are being proposed for Tier 2 prescriptive would eliminate the production of homes with vaulted ceilings unless the trusses are redesigned with higher heel heights or steeper exterior roof slopes. These changes will then increase the shipping height and require truss re-designs.
- The DOE proposal includes assumptions that heel heights will increase as the required depth of insulation increases to minimize the compressed area. The DOE document states that the truss heel height is assumed to be 2.5 for ceilings using less than or equal to R-22, 5.5 inches for insulation between R-22 and R-30, and 7.5 inches for over R-38. This increased heel height assumption will require the trusses to be re-designed and will increase shipping heights. Homes with increased shipping heights will be more costly to ship based on state-by-state restrictions.

13. DOE requests comment on the proposal not to limit the total area of glazed fenestration.

MHI agrees that the DOE should not limit the amount of glazed fenestration. The 2021 IECC already includes exemptions that must also be included in this proposed rule. Further, MHI recommends adding the following:

(6) [R402.3.3] Glazed fenestration exemption. Not greater than 15 square feet (1.4 m2) of glazed fenestration per dwelling unit shall be exempt from the U-factor and SHGC requirements in Section R402.1.2. This exemption shall not apply to the Total UA alternative in Section R402.1.5.

14. DOE requests comment on removing the proposed requirement that exterior floor insulation installed must maintain permanent contact with the underside of the rough floor decking.

MHI supports exempting manufactured housing from this requirement. In manufactured home construction, the floor insulation between the I-beams is inherently not in contact with the underside of the floor decking. This must be exempted to permit standard construction practices as outlined below.

The typical insulation used in the production environment is blanket style insulation that is installed between the bottom of the floor and the chassis frame which keeps the HVAC supply duct system inside the thermal boundary of the building. Changing this method of installation would effectively remove the HVAC supply duct system from inside the thermal boundary of the building and cause an increased heat gain and heat loss, effectively decreasing energy efficiency. This would be contradictory to the purpose and scope of the IECC. For this reason, most manufacturers do not currently install floor insulation between the floor joists that would be in contact with the underside of the floor decking. Therefore, production facilities are not set-up to efficiently install insulation that is contact with the underside of the floor decking. However, interior perimeter rim joist insulation is a common practice.

Installing insulation between the floor joists will also increase the production labor to install the insulation. This additional labor will add around 20 minutes of production time to each floor produced. For a plant producing 8 floors per day, the increased production time will be around 160 minutes per day. With 8 floors per day production, the line will have to move about every 50 mins. Therefore, the increased labor required will either slow production or require new additional labor resources. Whether production is reduced, or additional labor is required, the overall cost of the home will be increased, but these costs were not considered in the DOE analysis.

Further, the DOE analysis assumes that the floor joists are 2x6 with insulation up to and including R-22, and 2x8 floor joists insulated to R-30 and above. Currently 90 percent of floors produced use 2x6 floor joists. Therefore, the increased joists depth will add approximately a 33 percent material cost increase which will be around \$200 per 14x76 floor. This 2" floor joist change will also increase the shipping height. This additional 2" only compounds to the issue discussed about the truss changes.

Additionally, placing more than R-11 blankets under the floor joists cannot be done without offsetting outriggers and providing blocking between joists. This is necessary because compressing more than R-11 insulation between an outrigger and a joist results in noticeable humps in the floor at each outrigger location.

15. DOE requests comment on the proposed updates to the installation of insulation criteria as it applies to manufactured homes construction only.

Having continuous insulation on the outside of the studs may become problematic for siding installation due to transportation. The siding fasteners would have to penetrate thru the continuous insulation which would pose an issue, especially for siding applications with more weight. Continuous insulation will increase the cost of manufacturing due to the need to use hand-driven nails, instead of pneumatically drive staples, to attach vinyl siding. Nails will need to be hand driven to prevent overdriving and buckling of vinyl siding.

Page 13 Submission by the Manufactured Housing Institute October 13, 2021

Production facilities are not set-up to efficiently install continuous exterior insulation. This would require extensive upgrading of process, machinery and facilities to a point of which could potentially result in plant closures and loss of jobs. Installing continuous exterior insulation will increase the production labor required because this an additional process that is not currently considered in production. It will also be difficult to properly fasten this continuous exterior insulation. Special fasteners will be required and/or developed to maintain the current structure strength that current process provide. This could potentially require extensive research and development of new materials and process as well as increased production time to install.

Because the exterior installation will be time consuming, the floor production would be reduced by a half a floor. This reduced production would cost the manufacturer \$27,500 (assuming \$55,000 per floor.)

Another issue with the exterior insulation is that the siding will have to be fastened thru the insulation. This becomes problematic when a heavier exterior siding is installed. In this situation, the fasteners, that are installed thru the exterior insulation, will not support the siding during transportation. This situation would require some sort of additional support such as a ledger angel to properly support the siding. The additional costs for the ledger angle and the increased production costs do not appear to be included in the DOE analysis.

The exterior insulation requirement will also affect the overall shipping width, because currently the homes are designed to maximize the home square footage within the shipping width requirements. Because the widths are already maximized the space to accommodate the exterior sheathing would have to be taken from inside the home. This reduction in width inside the home, would severely impact floor plan designs as the exist. All homes would need to be re-engineered and re-approved at a substantial cost to the manufacturers. The exterior insulation requirement would eliminate all 12-wide production models due to space limitations in the hallways. Furthermore, standard doors for manufactured homes are designed for overall wall thicknesses of 4- or 6- inches and increasing the thickness will require the use of extension jambs or the development of new products to accommodate increased wall widths.

16. DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking. Specifically, DOE requests comment on whether the 2021 IECC updates for installation criteria for access hatches and doors, baffles and shafts are applicable to manufactured housing and should be considered in this rulemaking.

While the IECC is respected in the construction industry, it was introduced as a standard specific to commercial and site-built residential housing with no input from the manufactured housing industry. Given that the IECC essentially ignores all the construction aspects unique to manufactured housing, requiring the industry to comply with a building code that was developed without the benefit of our industry's knowledge or participation is not an appropriate solution. For example, the baffle requirements included in the proposal will not work because the closest you can get to the rim rail is inside the face and not the outside edge. That simply will not work for manufactured homes.

17. DOE requests comment on the proposed updates to the air barrier criteria as it applies to manufactured homes construction only. Further, DOE requests comment whether the SNOPR proposal continues to be designed to achieve air leakage sealing requirements of 5 ACH.

Since the required testing of the air barrier are not included in the rule, it would be impossible to achieve this or any standard. Table 460.104 provides prescriptive criteria, but the testing criteria is not included. The rule must exempt holes that communicate between the interior and the belly of the house from the air barrier criteria. In addition, testing is required, and the costs of those tests must be included into the cost-benefit analysis.

18. DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking. Specifically, DOE requests comment on whether the 2021 IECC updates for air barrier criteria for recessed lighting, narrow cavities and plumbing are applicable to manufactured housing and should be considered in this rulemaking. If so, DOE requests comment on whether the requirements would alter the 5 ACH designation.

Because the IECC essentially ignores all the construction aspects unique to manufactured housing, requiring the industry to comply with a building code that was developed without the benefit of our industry's knowledge or participation is not an appropriate solution. For example, if an electrical box or phone box is placed on exterior walls is an interior and exterior air barrier required? If there is an exterior air barrier, would electrical boxes need to be sealed? Further, holes in the floor, such as under bathtubs and showers, must be exempted from sealing to permit the installation of p-traps in 2x6 floor systems. These holes do not allow air intrusion from the exterior because the exterior floor air barrier is the bottom board and is not the floor itself. These are just a few examples why the most appropriate code to utilize to update energy standards for manufactured homes is the HUD Code.

19. DOE requests comment on the proposal to require that total air leakage of duct systems for all manufactured homes is to be less than or equal to 4 cfm per 100 square feet of conditioned floor area.

The proposed rule limits "total air leakage" of the duct system whereas current testing, such as that done for Energy Star homes, is based on air leakage to the exterior. Testing leakage to the outside requires the use of a second machine used simultaneously. This would be a more extensive and costly test with_increased failure rates while providing little benefit in terms of energy savings. Where ducts are in the floor, and contained within the bottom board, they typically do not leak to the exterior and should be exempt. Again, since no testing requirements are included in this proposal, it is impossible to know the costs or procedures of achieving such levels.

20. DOE requests comment on DOE's interpretation of R403.1 and the proposed updates to the thermostat and controls requirements. In addition, DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking.

MHI believes programmable thermostats should remain an option for the homebuyer.

21. DOE requests comment on DOE's interpretation of R403.5 and the proposed updates to the service hot water requirements. In addition, DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking. Specifically, DOE requests comment on whether the circulating hot water system temperature limit should be included as a requirement.

Circulating hot water systems are not typically used in manufactured homes. Further, 24 CFR 3280 already has provisions for scald prevention that limit the temperature of hot water. Additional requirements would be redundant and unnecessary.

22. DOE requests comment on the proposal to include the 2021 IECC fan efficacy standard requirements. DOE requests comment on whether any of the fan efficacy requirements are not applicable to manufactured homes.

The applicability of the increased efficacy standards would be dependent upon the additional costs associated, and the return on investment of the increased mechanical ventilation requirements.

23. DOE requests comment on whether the HRV and ERV provisions under 2021 IECC for site-built homes are applicable to manufactured homes and whether they would be cost-effective. Specifically, DOE requests comment on costs for the HRV and ERV requirements as it applies to manufactured homes in all climate zones.

HRV's and ERV's would add significantly to the cost of manufactured homes and 24 CFR 3280 already contains provisions for providing fresh air within a manufactured home. HRV's and ERV's are products mainly promoted by those appliance manufacturers and have been found in many cases to increase moisture related problems and increased energy usage, specifically in the southern climates.

24. DOE requests comment on the above ventilation strategies, including (but not limited to) cost, performance, noise, and any other important attributes that DOE should consider, including those related to mitigation measures. While the alternate ventilation approaches are not integrated into the analysis presented as part of this proposal, DOE is giving serious consideration as to whether it should incorporate one or more of these options as part of its final rule based on any additional data and public comments it receives.

HRV's and ERV's would add significant construction costs. If implemented with the furnace, as most current ventilating systems are, significant redesign would be required to increase the size of the furnace compartment to accommodate the additional equipment and ductwork. Currently ventilation strategies in manufactured housing have proven to be efficient and effective for many years. In fact, the current IECC recognizes a process developed and commonly used by the manufactured housing industry as an accepted application in residential and commercial construction.

25. DOE requests comment on the cost-effectiveness and feasibility of requiring R-20+5 for the exterior wall insulation for climate zones 2 and 3 Tier 2/Untiered manufactured homes. DOE also requests comment on the sensitivity analysis for R-21 that would result in positive LCC savings for all cities.

The use of continuous insulation is problematic due to the required changes in design, associated costs, and need for products that don't exist. The increase in unit width due to the addition of continuous foam will require a reduction in the structural floor width equal to the thickness of the insulation. This will require redesign of the chassis system, trusses, and retooling of fixtures and jigs within the plant. Any reduction in interior width, due to increases in exterior width, will eliminate or require significant redesign of many single-wide models that incorporate a bathroom with adjacent hallway that are already at the minimum widths permitted under 24 CFR 3280. Furthermore, standard doors for manufactured homes are designed for overall wall thicknesses of 4- or 6-inches and increasing the thickness will require the use of extension jambs or the development of new products to accommodate increased wall widths. Permitting the use of R-21 only in lieu of R20+5 is necessary.

26. DOE requests comment on the inputs to the conversion cost estimates.

Because the threshold cost is updated annually and because it is assumed that the list price must be updated, the cost to update model plans would be a reoccurring annual cost rather than a one-time cost. This must also be revised so that cost is not a consideration for Tier 2 homes. As currently proposed, the retail price must be determined for all homes to determine if it is above or under the threshold. The Tier 2 definition should not have a threshold price. Instead, a Tier 2 home should be defined as "A manufactured home that is not qualified as a Tier 1 home."

27. DOE requests comment on the shipment breakdown per tier and using a substitution effect of 20 percent on shipments to account for the shift in homes sold to the lower tiered standard. DOE requests comment on whether it should use a different substitution effect value for this analysis – and if so, why. (Please provide data in support of an alternative substitution effect value.)

Currently, very few homes are produced at the Tier 1 level of under \$55,000. It is unlikely that additional homes will be manufactured at that level. Instead, MHI expects an overall reduction in the manufacturing and purchase of manufactured homes across the board.

28. DOE requests comment on the calculation of deadweight loss presented above and the extent to which there are market failures in the no-standards case.

Deadweight loss will increase as a result of this proposal, as many potential consumers will be prices out of purchasing a manufactured home.

29. DOE requests comment on the number of manufacturers of manufactured housing producing home covered by this rulemaking.

As of September 2021, there are 138 plants and 34 corporations producing manufactured homes in the country. As a result of this proposed rulemaking, all manufacturers will be negatively impacted.

30. DOE requests comment on the cost to update model plans and the number of model plans to update as a result of the proposed rule; on the types of equipment and capital expenditures that would be necessitated by the proposal; and the total cost of updating product offerings and manufacturing facilities. DOE requests comment on how these values would differ for small manufacturers. DOE requests comment on its estimate of average annual revenues for small manufacturers of manufactured housing.

Because the threshold cost is updated annually and because it is assumed that the list price must be updated, the cost to update model plans would be a reoccurring annual cost rather than a one-time cost. This must also be revised so that cost is not a consideration for Tier 2 homes. As currently proposed, the retail price must be determined for all homes to determine if it is above or under the threshold. The Tier 2 definition should not have a threshold price. Instead, a Tier 2 home should be defined as "A manufactured home that is not qualified as a Tier 1 home."

The DOE analysis assumes the use of 2x8 floor joists in floors with R-30 insulation. Most floors are constructed with 2x6 framing. Insulation thicknesses that exceed 5.5-inches cannot reasonably be assumed in HUD home construction. Based on the amount of the price change in Zone III homes it does not appear that the DOE cost analysis considers the cost of changing 2x6's to 2x8's. Additionally, placing more than R-11 blankets under the floor joists cannot be done without offsetting outriggers and providing blocking between joists. This is necessary because compressing more than R-11 insulation between an outrigger and a joist results in noticeable humps in the floor at each outrigger location. Based on the amount of the price change in Zone III homes, it does not appear that the DOE cost analysis considers the cost of adding blocking between joists.

Further, the DOE cost increases only accounted for the cost of additional material and not the additional labor costs or the additional overhead and profit that would be associated with the higher home cost.

Manufactured Housing Association for Regulatory Reform

1331 Pennsylvania Avenue, NW • Suite 512 • Washington, DC 20004 • 202-783-4087 • Fax 202-783-4075 • mharrdg@aol.com

October 13, 2021

VIA FEDERAL EXPRESS AND ELECTRONIC SUBMISSION

Manufactured Housing Consensus Committee C/O Home Innovation Research Labs Administering Organization 400 Prince George's Boulevard Upper Marlboro, Maryland 20774

Re: Energy Conservation Standards for Manufactured Housing - Third Comments

Dear Members of the Manufactured Housing Consensus Committee:

The Manufactured Housing Association for Regulatory Reform (MHARR) submits the following third set of comments in connection with the Manufactured Housing Consensus Committee's (MHCC) consideration of a Supplemental Notice of Proposed Rulemaking (SNPR) regarding "Energy Conservation Standards for Manufactured Housing" published by the U.S. Department of Energy (DOE) in the Federal Register on August 26, 2021.¹ MHARR is a national trade association representing producers of manufactured housing subject to regulation pursuant to the National Manufactured Housing Construction and Safety Standards Act of 1974 (1974 Act), as amended by the Manufactured Housing Improvement Act of 2000 (2000 reform law), as well as relevant provisions of the Energy Independence and Security Act of 2007 (EISA).

I. INTRODUCTION

The following are MHARR's third set of comments regarding MHCC consideration of DOE's August 26, 2021 manufactured housing energy standards supplemental proposed rule. MHARR's initial comments, submitted September 15, 2021, principally addressed policy issues related to the proposed standard, including its predictably destructive cost impact on manufactured housing consumers, the manufactured housing market and the manufactured housing industry, as well as the absence of any genuine or legitimate need for excessive and discriminatory manufactured housing energy standards, based on federal data showing that manufactured housing residents already pay less for <u>all</u> types of home energy sources than residents of detached, single-family homes under existing HUD standards. In its second set of comments, filed October 1, 2021, MHARR provided additional information concerning the fundamental incompatibility of the International Energy Conservation Code (IECC) with manufactured housing construction and

Preserving the American Dream of Home Ownership Through Regulatory Reform

¹ MHARR's September 15, 2021 and October 1, 2021 comments are hereby incorporated herein by reference.

affordability, the fundamental incompatibility of the IECC with the objectives and consensus procedures of the Manufactured Housing Improvement Act of 2000, and an initial statement of specific DOE proposed standards that would be inappropriate, non-cost-effective for manufactured housing, or otherwise destructive of manufactured housing and the manufactured housing market.

In this third set of MHCC comments, submitted in connection with the MHCC's scheduled meeting on October 20, 2021, MHARR addresses: (1) the substantial overlap (although denied by DOE) between the current proposed 2021 DOE manufactured housing energy standards and the <u>thoroughly discredited</u> manufactured housing energy standards proposed by DOE in June 2016 based on a deceitful and manipulated "negotiated rulemaking" process (subsequently <u>rejected</u> by the Office of Management and Budget in 2017); and (2) the <u>fundamentally</u> arbitrary and capricious nature of the DOE SNPR proposal, based on an unlawfully vague, ambiguous and undefined delegation of rulemaking power under section 413 of the Energy Independence and Security Act of 2007.²

For the reasons set forth in <u>all</u> of these comments, the August 26, 2021 proposed DOE manufactured housing energy standards rule should be <u>rejected</u> by the MHCC with relevant comments submitted to DOE, together with a request for an extension of the current October 25, 2021 comment deadline, in order to ensure a complete and thorough review of the DOE proposal, and proper stakeholder input.

II. <u>COMMENTS</u>

A. THE PROPOSED STANDARDS ARE A DECEPTIVE "REBOOT" OF DOE'S TAINTED 2016 STANDARDS

DOE, in its August 26, 2021 Supplemental Notice of Proposed Rulemaking (SNPR), repeatedly maintains that its "new" proposed "energy conservation" standards for manufactured homes are substantively different from the disastrously-flawed standards proposed in its original June 2016 Notice of Proposed Rulemaking,³ and that the alleged "changes" incorporated in the 2021 proposed standards somehow address or mitigate the cost concerns and other fundamental flaws highlighted by MHARR and other commenters in the 2016 rulemaking. For example, DOE states in its August 26, 2021 SNPR, that its so-called "tiered" standards proposal, based on the 2021 version of the International Conservation Code (IECC), would specifically "replace DOE's June 2016 proposal."⁴Similarly, DOE asserts that this "tiered" proposal responds to "concerns raised by HUD" and others with respect to the 2016 proposed rule and the need to maintain the

² <u>I.e.</u>, 42 U.S.C. 17071.

³ The pervasive, fundamental and fatal defects of that June 2016 proposed rule and the irretrievably tainted, sham DOE "negotiated rulemaking" process which led to that proposal, including selective undisclosed leaks to DOE-favored "insiders" (within and outside the industry) is fully documented in MHARR's August 8, 2016 written comments to DOE (Attachment 1 to MHARR's September 15, 2021 MHCC Comments), which are hereby incorporated herein by reference.

⁴ <u>See</u>, 86 Federal Register, No. 163 (August 26, 2021) "Energy Conservation Standards for Manufactured Housing," p. 47744 at p. 47746, col.1.

purchase price affordability of federally-regulated manufactured housing.⁵ The reality, however, is that the 2021 DOE proposed rule is nothing more than a thinly-veiled "reboot" of the fatally-flawed and defective 2016 proposed rule – made substantively worse by the more stringent incorporated mandates of the 2021 IECC. Its putative "tiered" structure, moreover, is little more than window-dressing designed to provide a superficial veneer of supposed cost-sensitivity, while leaving DOE <u>completely free</u> to adopt the more costly "Tier 2" standards <u>across-the-board</u> in a final rule. This duplicitous bait-and-switch scheme should be rejected by the MHCC

At the outset, DOE's assertion that the 2021 proposed standards somehow "replace" the 2016 proposed standards in any substantive way - other than to make them even more stringent and costly - is demonstrably false.

While DOE, very early in its 94-page August 26, 2021 proposed rule,⁶ states that its current proposal "replaces" the fatally-defective June 2016 proposed manufactured housing energy standards that were rejected by the Office of Management and Budget (OMB) and ultimately withdrawn from further consideration by the Trump Administration,⁷ it acknowledges much later in its SNPR,8 that the DOE 2021 proposal, instead, merely "updat[es] the proposed energy conservation standards presented in the June 2016 NOPR."⁹(Emphasis added). While the term "replace," therefore, deceptively implies the substitution of a completely new proposal for the rejected and withdrawn 2016 proposed rule, the reality is that the 2021 proposed rule is simply a warmed-over - and even more stringent and costly version of DOE's baseless 2016 proposed standards, due to the 2021 proposal's reliance on the much more stringent and costly 2021 IECC, which, according to the International Code Council (ICC) is only 10% below net-zero energy usage for residential buildings.¹⁰ The DOE-alleged "replacement" of the previously rejected and withdrawn 2016 DOE proposal, consequently, is a sham -- in at least two primary respects – as is explained in greater detail below. This deceptive proposal would not ameliorate the worst impacts of high-cost DOE energy regulation or protect lower and moderate-income manufactured housing consumers from those destructive impacts, up to and including total exclusion from the manufactured housing market and homeownership more broadly. Rather, the 2021 DOE proposal is a dressed-up retrenchment of the 2016 proposed rule "on steroids," due to its reliance on the

⁵ <u>Id</u>. at p. 47759, col. 3. "As a result of concerns raised by HUD regarding the need to maintain affordability, which interrelate with the cost-effectiveness concerns specified in 42 U.S.C. 17071, DOE is presenting a primary proposal based on tiered standards...." <u>See also</u>, 86 Federal Register, <u>supra</u> at p. 47756, col. 2.

⁶ DOE makes this fundamental – and fundamentally <u>false</u> – assertion at the <u>third page</u> of its August 26, 2021 SNPR. <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47746, col. 1.

⁷ See, 83 Federal Register, No. 150 (August 3, 2018) "Energy Conservation Standards for Manufactured Housing," p. 38073 at p. 38074, col. 3: "On June 17, 2016, DOE published in the Federal Register a [Notice of Proposed Rulemaking]. *** DOE received nearly 50 comments on the proposed rule during the comment period. After considering those comments, DOE prepared a draft final rule governing energy efficiency in manufactured housing and submitted it to OIRA [the Office of Information and Regulatory Affairs within the Office of Management and Budget] for review under Executive Order 12866. OIRA received the draft final rule on November 1, 2016. <u>Again, however, the draft final rule did not clear the OIRA review process</u> and was withdrawn on January 31, 2017." (Emphasis added) (Internal citations omitted).

⁸ <u>I.e.</u>, on the 21st page of its SNPR. <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47765, col. 1.

⁹ <u>Id</u>.

¹⁰ <u>See</u>, International Code Council (ICC), (March 2021) IECC Frequently Asked Questions: "What Will Change About the Substance of the IECC:" "The 2021 IECC will be the starting point for revisions for the 2024 IECC. <u>The 2021 IECC base efficiency requirements are only 10% from net zero for residential buildings</u>...."

more stringent and -- as alleged by the National Association of Home Builders (NAHB) and others -- politically manipulated 2021 IECC.¹¹

The full scope of the deception inherent in the 2021 SNPR becomes evident only through a thorough and complete review of its <u>entire</u> 94 pages, within the context of the <u>entire</u> administrative record of the present rulemaking. Such a review demonstrates two key facts.

First, the "two-tiered" approach set forth as DOE's "primary" proposal in the 2021 SNPR, is not binding on DOE with respect to any final rule in this proceeding. Put differently, it is entirely possible, if not likely, that a DOE final rule in this proceeding would impose the so-called "Tier 2" standards (or some variant thereof) on all manufactured homes, regardless of price.¹² Among other things, this is demonstrated by the fact that while the two-tiered regulatory approach is deemed "primary" in DOE's August 26, 2021 SNPR, and a "one-size-fits-all," one-tier approach is identified as an "alternate" methodology in that SNPR, the two approaches were presented in a completely opposite configuration just weeks earlier, in DOE's July 7, 2021 "Notice of Intent to Prepare an Environmental Impact Statement for Energy Conservation Standards for Manufactured Housing."¹³In that statutorily-required document,¹⁴DOE referred to a single, across-the-board energy conservation standard for manufactured homes "based on the 2021 IECC" as its primary "proposed action," with a "tiered approach" being "consider[ed]" only as "an action alternative."¹⁵ (Emphasis added). Having published both proposals (i.e., "tiered" and "un-tiered") in the Federal Register, DOE could attempt to adopt a full-scale, un-tiered, IECC 2021-based standard for all manufactured homes, regardless of price, as its final rule. The MHCC should not accept or endorse such a "bait-and-switch" scenario.

Second, any claim that the 2021 proposed standards are somehow "different" from, less stringent than, or more cost-sensitive than the fatally-flawed 2016 proposed standards is, again, demonstrably false. While DOE does, in fact, attempt to portray the 2021 proposed standards as being more cost-sensitive than the 2016 proposed rule,¹⁶a close review of the 2021 SNPR shows that contention to be baseless and deceptive. In the 2021 SNPR's 23-page summary and explanation of the 2021 proposed standards,¹⁷DOE states <u>30 times</u> that various elements of its August 26, 2021 SNPR proposal are either "consistent with," "based on" or "remain the same" as either the 2016 "negotiated rulemaking," the Manufactured Housing Working Group's (MHWG)

¹¹ See, MHARR October 1, 2021 MHCC Comments at pp. 4-6 and third-party sources cited therein.

¹² The August 26, 2021 SNPR thus states, for example: "DOE's alternate proposal is the 'untiered' approach, wherein energy conservation standards for <u>all</u> manufactured homes would be based <u>only</u> on the 2021 IECC. <u>Both proposals</u> replace DOE's June 2016 proposals and <u>the selected approach</u> would be codified in a new part of the Code of Federal Regulations...." <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47746, col. 1. (Emphasis added).

¹³ <u>See</u>, 86 Federal Register, No. 127 (July 7, 2021) "Notice of Intent to Prepare an Environmental Impact Statement for Energy Conservation Standards for Manufactured Housing," p. 35773, at p. 35774

¹⁴ DOE's July 7, 2021 Notice was published in accordance with the requirements of the National Environmental Policy Act of 1969 (NEPA). <u>See</u>, 86 Federal Register, <u>supra</u> at p. 35773.

¹⁵ <u>Id</u>. at p. 35774, col. 3.

¹⁶ <u>See, e.g.</u>, 86 Federal Register, <u>supra</u> at p. 47759, col. 3: "As a result of concerns raised by HUD regarding the need to maintain affordability, which interrelate with the cost-effectiveness concerns specified in 42 U.S.C. 17071, DOE is presenting a primary proposal based on tiered standards that would prescribe a complement of cost-effective energy conservation requirements based on the requirements in the 2021 IECC."

¹⁷ <u>See</u>, 86 Federal Register, <u>supra</u> at pp. 47765-47788.

2015/2016 recommendations, or the 2016 proposed rule, or some combination of the three.¹⁸Further, of the 24 separate components addressed in SNPR Tables III-13 and Table III-14 concerning "insulation installation" and "air barrier" criteria,¹⁹DOE proposes "no change" between the 2016 IECC and 2021 IECC levels for <u>11 components</u> and proposes <u>updating</u> the applicable criteria for <u>5 more</u> to 2021 IECC levels. By contrast, it proposes eliminating or excluding just 4 of those 24 components.²⁰Again, therefore, the fundamental thrust of the 2021 DOE proposal is not to materially ameliorate the destructive cost impacts of the 2021 IECC, or its original 2016 proposed rule, but to use the 2021 IECC to bootstrap its original 2016 IECC-based proposals and <u>add</u> a significant number of even more stringent and costly measures that would needlessly undermine the affordability of manufactured homes as mandated by preexisting federal law.

Again, the MHCC should not sanction or endorse such a flagrant "bait and switch" stratagem, and should, instead, reject the DOE 2021 SNPR proposal <u>in its entirety</u>.

B. DOE'S ENTIRE PROPOSAL IS ARBITRARY, CAPRICIOUS AND AN ABUSE OF DISCRETION IN VIOLATION OF LAW

The federal Administrative Procedure Act (APA) provides for the invalidation of agency action that is determined to be "arbitrary, capricious, an abuse of discretion, or otherwise not in accordance with law."²¹To satisfy this statutory standard, an agency "must examine the relevant data and articulate a satisfactory explanation for its action including a rational connection between the facts found and the choice made." Burlington Truck Lines v. United States, 371 U.S. 156, 168, 83 S.Ct. 239, 245-246, 9 L.Ed.2d 207 (1962).

In order to provide a complete and fully-articulated administrative record for a reviewing court in any possible legal challenge to DOE's final rule in this matter,²² the MHCC should identify, consider and <u>expressly reject</u> the various ways that DOE, in its SNPR, has arbitrarily and subjectively altered, modified, or transformed the application of the 2021 IECC, due to the fact – specifically <u>acknowledged</u> by DOE – that the IECC is <u>not</u> a code established or designed for manufactured homes as defined by federal manufactured housing law.²³Put differently, DOE's

¹⁸ <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47766, col. 3, p.47768, col. 1, p. 47771, col. 2 and 3, p. 47773, col. 2 and 3, p. 47774, col. 1 and 3, p. 47775, col. 1 and 2, p. 47776, col. 1, p. 47777, col. 3, p. 47778, col. 3, p. 47778, col. 2, p. 47781, col. 2 and 3, p. 47785, col. 2 and 3, p. 47786, col. 1, 2 and 3, p. 47787, col. 3

¹⁹ <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47780-47781 and 47783-47784.

²⁰ The August 26, 2021 SNPR "seeks comment" on whether updated 2021 IECC requirements should be imposed for the remaining four components.

²¹ <u>See</u>, 5 U. S. C. §706(2)(A).

²² See, Department of Commerce v. New York, 588 U.S. ____, (2019): "[I]n order to permit meaningful judicial review, an agency must "disclose the basis" of its action. Burlington Truck Lines, Inc. v. United States, 371 U. S. 156, 167–169 (1962) (internal quotation marks omitted); see also SEC v. Chenery Corp., 318 U. S. 80, 94 (1943) ("[T]he orderly functioning of the process of review requires that the grounds upon which the administrative agency acted be clearly disclosed and adequately sustained."). Second, in reviewing agency action, a court is ordinarily limited to evaluating the agency's contemporaneous explanation in light of the existing administrative record.

²³ <u>See e.g.</u>, 86 Federal Register, <u>supra</u> at p. 47763, col. 1: "[T]he IECC is specific to site-built structures." <u>See also</u>, <u>Id.</u> at p. 47754, col. 3: "DOE notes that the IECC is designed for building structures that have a permanent foundation.

August 26, 2021 proposed rule relies on an inconsistent jumble of arbitrary thresholds, modifications, alterations, and outright fabrications, concocted by DOE in a futile effort to convert the 2021 IECC from a code not designed, intended, or appropriate for manufactured housing, into something that it is <u>not</u> – a legitimate, cost-effective energy standard for the unique nature and construction of HUD-regulated manufactured housing. The MHCC should not accept or endorse, even implicitly, this phony exercise that will decimate the manufactured housing market and place homeownership beyond the means of millions of Americans who would otherwise be able to afford a modern HUD-regulated manufactured home.

Significantly, DOE does not deny that it has exercised "broad" (and, in fact, <u>overbroad</u>) discretion in its August 26, 2021 SNPR, to alter, modify and/or eliminate certain elements of the 2021 IECC and its application, in a subjective and arbitrary effort to unilaterally convert the IECC from a code for more costly, larger and differently-designed, constructed and configured site-built homes, into a code for federally-regulated manufactured homes. DOE thus states in its SNPR:

"Because the IECC is specific to site-built structures, DOE's supplemental proposal, while based on the 2021 IECC, <u>has required modifications to the IECC provisions</u> for application to manufactured homes. In DOE's view, the language Congress used in instructing DOE to set standards for these structures <u>is broad and does not require the imposition of requirements for manufactured homes that are identical to those that the IECC provides for site-built structures. The use of the phrase 'based on' readily indicates that Congress anticipated that DOE would use its <u>discretion in adapting</u> elements of the IECC's provisions for manufactured housing use, including whether those elements would be appropriate in light of the specific circumstances related to the structure."²⁴</u>

(Emphasis added). While MHARR agrees that the statutory directive of 42 U.S.C. 17071 does not require the imposition of energy standards for manufactured homes that "are identical to those that the IECC provides for site-built structures,"²⁵the reality is that the statute provides no specific benchmarks, standards, principles, or criteria whatsoever, for the necessary conversion of the IECC from a site-built-<u>only</u> code into a code for non-site-built manufactured housing, and DOE has articulated no such overriding criteria in its August 26, 2021 SNPR.

Indeed, there is <u>no</u> evidence that Congress, at the time of its adoption of the Energy Independence and Security Act of 2007 – and EISA's section 413 manufactured housing energy directive -- was even aware that the IECC is (and continues to be) designed <u>solely</u> for site-built housing, is not an appropriate or cost-effective code for manufactured housing, and is voted-on, in its final form, <u>exclusively</u> by state and local building code officials with no direct responsibility for the regulation of manufactured housing construction or safety. Further, there is no evidence

Manufactured housing structures, however, are not built on permanent foundations but are built on a chassis to enable them to be moved or towed when needed. As a result, because they present their own <u>unique set of unique considerations that the IECC was not intended to address</u>, some aspects of the IECC are unable, or highly impractical, to be applied to manufactured housing." (Emphasis added).

²⁴ See, 86 Federal Register, supra at p. 47757, col. 1.

²⁵ It should be noted that the IECC, <u>per se</u>, has no binding force, effect or authority, <u>except</u> as separately adopted by law at the local, state or federal level.

and no indication from the statutory text of EISA section 413, that Congress intended to confer upon DOE – an agency with no other comparable regulatory role regarding <u>housing</u> or residential construction -- unlimited, undefined and unrestrained discretion to alter aspects of the IECC, or its application, based on its own unilateral decisions.²⁶ Nevertheless, the August 26, 2021 SNPR contains multiple modifications and alterations to the 2021 IECC and its application.

As an initial matter, DOE attempts to "limit" the predictably devastating purchase price and manufactured housing market impacts of the 2021 IECC by applying a highly-modified and, supposedly, limited version of the IECC standards to manufactured homes with a manufacturer's "retail list price" of \$55,000 or less.²⁷ These modified standards, according to DOE, will result in a purchase price increase of no more than \$750.00 for homes within "Tier 1" of DOE's two-tiered, "primary" proposal.²⁸ Virtually <u>every</u> aspect of this proposal, however, is fundamentally arbitrary in violation of the APA.

First, there is no express or implied authorization in EISA section 413 for a multi-tiered regulatory regime. Clearly, if Congress had wanted a multi-tiered regulatory system, or wished to authorize a multi-tiered regulatory system that would effectively <u>discriminate</u> against certain purchasers or subcategories of manufactured homes²⁹ – <u>all</u> of which are <u>expressly</u> identified and protected as "affordable" homes under federal manufactured housing law – it could have done so, but manifestly, <u>did not</u>.

Second, there is nothing express or implied in EISA section 413 to authorize a two-tiered or multi-tiered energy regulatory structure based specifically on a manufacturer's retail list price, in violation of pre-existing federal law, which identifies and was designed <u>specifically</u> by Congress to protect the purchase price affordability of <u>all</u> manufactured homes as a major source of affordable homeownership for <u>all</u> Americans.³⁰Moreover, using this particular parameter as the demarcation line between the extreme "Tier 1" proposed standards and the even <u>more extreme</u> "Tier 2" standards is fundamentally arbitrary, in violation of the APA because, as DOE admits in its August 26, 2021 SNPR, the manufacturer's retail list price is not the same as the retail purchase price of the home to the consumer, and does not necessarily correspond directly or closely with that final acquisition price.³¹

²⁶ <u>I.e.</u>, whether reached based on non-binding "consultation" with HUD or not.

²⁷ See, 86 Federal Register, supra at p. 47746, col. 1-2.

²⁸ <u>Id</u>. at p. 47746, col. 2.

²⁹ <u>I.e.</u>, by compelling those purchasers who remain in the market to pay thousands of dollars more for the purchase of certain manufactured homes – <u>comprising some 75% of the HUD Code market as calculated by DOE</u> -- than those same purchasers do today. <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47760, col. 2.

³⁰ <u>See, e.g.</u>, 42 U.S.C. 5401(b)(2), stating that "the purposes" of the Manufactured Housing Improvement Act of 2000 include "facilit[ating] the availability of affordable manufactured homes and to increase homeownership for all Americans."

³¹ <u>See, e.g.</u>, 86 Federal Register, <u>supra</u> at p. 47760, col. 2-3: "DOE acknowledges that the boundary of the proposed tiers is being applied to manufacturers' retail list prices, while the underlying data from which the boundary is derived in the [2019 U.S. Census Bureau] data are sales and/or purchase price data of manufactured homes, DOE understands the manufacturer's retail list price to be the price that the manufacturer provides in the sales contract to a distributor or retailer... On the other hand, the purchase price is the <u>final sales price of the home to the consumer</u>. The manufacturer's retail list price and the purchase price are not the same." (Emphasis added).

Third, there is nothing express or implied in EISA section 413 to authorize a manufacturer's retail list price demarcation line of \$55,000 to separate so-called "Tier 1" energy standards from so-called "Tier 2" energy standards. And, indeed, this demarcation or "boundary" as characterized by DOE,³² is arbitrary and capricious – in itself – in multiple respects. As an initial matter. DOE's unilateral creation of a multi-tiered standard, in itself, is arbitrary, as noted above. Further, the selection of the manufacturer's "retail list price" as the metric for the demarcation line, is arbitrary. As DOE itself notes, the manufacturer's retail list price is not synonymous with or equal to the final acquisition price paid by the home purchaser. As DOE thus acknowledges, "the manufacturer's retail list price and the purchase price are not the same."³³ Indeed, the demarcation price selected by DOE as the threshold between its proposed "Tier 1 and "Tier 2" standards: (1) bears no relation to the price paid by the ultimate purchaser of the home; (2) bears no relation to the ability of that consumer to qualify for financing to purchase the home at that price level;³⁴ or (3) the number of lower and moderate-income consumers who would likely be excluded from the manufactured housing market -- and homeownership altogether -- by such a price increase, especially when combined with the as yet unknown purchase cost impacts of regulatory compliance, testing and enforcement requirements, which have not yet been estimated or considered by DOE.³⁵

Related to this, is the fact that a cost of \$55,000 - even if it <u>did</u> reflect a <u>relevant number</u> – such as the home purchaser's final cost, would still be arbitrary and capricious in violation of the APA, in that it is based on outdated information, is not consistent with current manufactured housing price metrics, and would be limited in application to less than 20% of the 2021 manufactured housing market. As MHARR explained in its initial comments submitted on September 15, 2021, the most recent U.S. Census Bureau data for manufactured housing, found that the "average" sales price of a <u>single-section manufactured home</u>, in 2020, was $$57,300.00,^{36}$ while, the "average" price of a double-section manufactured home was \$108,500.00 and the "average" price of all manufactured homes was $$87,000.00.^{37}$ With material costs having increased in 2021, moreover, these amounts are likely to be substantially higher today. The \$55,000.00 demarcation line, accordingly, was in 2020 – and <u>is</u> in 2021 –- <u>less</u> than the average price of a single-section homes, in turn, comprise less than 45% of the total HUD Code manufactured housing market. The overwhelming majority of the HUD Code market in 2021, therefore, is comprised of homes priced in excess of \$55,000.00. As a result, the

³² <u>See, e.g.</u>, 86 Federal Register, <u>supra</u> at p. 47760, col. 2.

³³ <u>Id</u>. at p. 47760, col. 3.

³⁴ DOE summarily dismisses concerns related to financing manufactured homes at higher prices attributable to its proposed energy regulations, stating: "Comments regarding loan practices are beyond the scope of this rulemaking."

³⁵ <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47759: "DOE is not addressing a test procedure, or compliance and enforcement provisions for an energy conservation standard for manufactured housing in this document." DOE further "acknowledges that it has not fully enumerated testing and enforcement costs at this time." <u>Id</u>. Oddly enough, however, while DOE apparently cannot or will not calculate the full consumer purchase cost impacts of its proposed rule "at this time," it does provide, in its August 26, 2021 SNPR, a calculation of the "potential global benefits resulting from reduced CO2 emissions" pursuant to the proposed rule. <u>Id</u>

³⁶ <u>See</u>, U.S. Census Bureau, "Cost and Size Comparisons: New Manufactured Homes and New Single-Family Site-Built Homes, 2014-2020."

³⁷ DOE's August 26, 2021 SNPR admits that it is "aware" of the existence of these figures, but "has not reviewed [them] in detail or incorporated these new data into the analysis presented" in its SNPR. <u>See</u>, 86 Federal Register, <u>supra</u>, at p. 47758, col. 2.

more costly, more extreme and more burdensome "Tier 2" standards will impact the overwhelming majority of manufactured homes and manufactured housing consumers, in an arbitrary and discriminatory manner, with devastating market consequences.³⁸

Fourth, there is nothing express or implied in section 413 to indicate that an alleged \$750.00 initial purchase price impact is a valid, legitimate or lawful price increase to impose on Tier 1 homes and Tier 1 home purchasers. Put differently, even if the \$750.00 alleged purchase price impact on Tier 1 homes were validly calculated – which it is not, per se, in that, among other things, it fails to acknowledge or consider the across-the-board purchase price impacts of testing. enforcement and regulatory compliance costs, including modified and ongoing design and production recertifications - there is nothing in EISA section 413 which states or indicates that \$750.00 is an appropriate, legitimate, or defensible amount of additional costs to impose on those homeowners. Viewed in this manner, the amounts associated with the proposed "tiered" energy standards system entail multiple and compounded arbitrary and capricious parameters - beginning with the \$55,000.00 demarcation threshold which is based, effectively, on nothing, which is further compounded by the \$750.00 "Tier 1" cost impact figure which, again, was effectively conjured and "made up" by DOE with absolutely no basis in fact or law. Put differently, there is no basis in law (i.e., EISA section 413) or fact to distinguish these figures from, for example, an \$85,000.00 demarcation line between "Tier 1" and "Tier 2," and a putative \$350.00 alleged cost impact on Tier 1 homes and consumers.

In each case,³⁹ these parameters, reflecting <u>quasi-legislative policy decisions</u> and determinations by DOE – together with proposed modifications to the 2021 IECC itself -- are not based upon specific, defined authority set forth in EISA section 413, are not based on specific, valid facts and information, and are fundamentally arbitrary and capricious within the meaning of the APA. Consequently, the MHCC should – and must -- go on record as disapproving of all of these provisions and proposed structures, in their <u>entirety</u>.

³⁸ DOE's August 26, 2021 SNPR estimates that Tier 1 will comprise "approximately 25 percent of the sales total ... of manufactured homes." <u>See</u>, 86 Federal Register, <u>supra</u> at p. 47760, col. 2. With the documented 2020 increase in the purchase price of a single-section manufactured home, however, above DOE's \$55,000 benchmark, and continuing raw material cost increases in 2021, MHARR has estimated that Tier 1, at most, would apply to 17.3% of the current-day manufactured housing market. <u>See</u>, MHARR October 1, 2021 MHCC Comments at p. 13, n. 43.

³⁹ There are many other examples of DOE determinations in the August 26, 2021 SNPR that are arbitrary, capricious, an abuse of discretion, or not otherwise in accordance with law, in violation of the APA. These include, but are not limited to, DOE's alleged "analysis" of market exclusion as a result of extreme purchase price increases resulting from its proposed energy standards. Among other things, DOE's August 26, 2021 SNPR summarily rejects a 2014 NAHB purchaser exclusion analysis specific to the manufactured housing market, that was presented to the "negotiated rulemaking" MHWG. That analysis showed exclusion levels well in excess of 300,000 households for every \$1,000.00 increase in the purchase price of a manufactured home. DOE mischaracterizes this study, asserting that it "assum[es] all American households intend to buy a home." See, 86 Federal Register, supra at p. 47796, col. 3. It then compounds this false characterization with a baseless "assumption" of its own, stating: "Rather than analyzing all American households, DOE's estimate in this SNOPR calculates the number of households no longer able to purchase a manufactured home from the pool of households planning to purchase a manufactured home (which is much smaller than the total number of American households)." Exactly how DOE "calculated" the number of American households "planning to purchase a manufactured home." however -- under either current price levels or the increased price levels attributable to its proposed standards -- is unclear. Moreover, even if DOE were somehow able to discern such a figure, its calculation or estimate would still be fundamentally arbitrary and capricious, in that it would not account for the additional costs of testing, enforcement, or regulatory compliance - none of which have been calculated by DOE - or the additional levels of market exclusion that would be attributable to those additional, but uncalculated costs.

III. <u>SUMMARY OF COMMENTS</u>

MHARR strongly urges the MHCC to <u>reject</u> DOE's proposed manufactured housing energy standards as set forth in its August 26, 2021 SNPR, for multiple, compelling reasons as are more particularly detailed in its comments submitted on September 15, 2021, October 1, 2021, and in these comments. In summary, those reasons include,⁴⁰ but are not limited to:

- 1. Manufactured homes, under current HUD standards, are <u>already</u> energy-efficient on a whole-home basis;
- 2. Manufactured home monthly energy costs are already lower than those for site-built single-family homes;
- **3.** Total manufactured home monthly operating costs are already lower than those for site-built single-family homes;
- 4. The IECC is <u>not</u> a code developed for manufactured homes;
- **5.** The IECC, through and including its 2021 iteration, was voted-on and approved by state and local building code officials with no direct responsibility for manufactured housing standards;
- 6. The IECC, through and including its 2021 iteration, was voted-on and approved by state and local building code officials often representing governments that discriminatorily exclude or severely restrict the placement of manufactured homes in their respective jurisdictions;
- 7. The IECC, unlike the HUD Code, is <u>not</u> based on a statutorily-mandated balance of protection and purchase price;
- 8. Application of the 2021 IECC to manufactured homes even in a modified form would result in prohibitive purchase price increases;
- **9.** Application of the 2021 IECC to manufactured homes even in a modified form would result in purchase price increases significantly higher than those "estimated" by DOE, which have consistently been understated;
- 10. Application of the 2021 IECC to manufactured homes even in a modified form would result in purchase price increases significantly higher than those "estimated" by DOE, which do not include, or account for, costs attributable to increased testing, compliance and regulatory enforcement burdens;

⁴⁰ MHARR will address other and additional reasons for the rejection of DOE's August 26, 2021 proposed rule in its comprehensive comments to DOE which will be filed subsequent to the MHCC's currently scheduled October 20, 2021 meeting.

- 11. Application of the 2021 IECC to manufactured homes even in a modified form would result in purchase price increases significantly higher than those estimated by DOE, which do not include, or account for, costs attributable to further and additional IECC revisions on a three-year code cycle without mandatory consideration or balancing of costs and benefits;
- Application of the 2021 IECC to manufactured homes even in a modified form would result in potential retail price increases up to \$12,908.00 (excluding costs of testing, enforcement and regulatory compliance) for double-section manufactured homes;
- 13. Application of the 2021 IECC to manufactured homes even in a modified form would result in the exclusion of 4, 068,466, or more, households from the single-section manufactured housing market, and the exclusion of 6,816,883, or more, households from the double-section manufactured housing market, based on metrics specific to manufactured housing developed by the National Association of Home Builders;
- 14. Application of the 2021 IECC to manufactured homes even in a modified form would result in the rejection of significantly more manufactured home purchase loans than at current price levels, exacerbating a rejection rate for manufactured home purchase loans that already exceeds the site-built home loan rejection rate by 500%;⁴¹
- **15.** Application of the 2021 IECC to manufactured homes even in a modified form would result in <u>disproportionately</u> more costly regulatory burden impacts for smaller industry manufacturers;
- **16.** Application of the 2021 IECC to manufactured homes in any form would be discriminatory and prejudicial, in that the 2021 IECC has not been adopted by <u>any</u> <u>state</u> for site-built homes;
- **17.** Disproportionate regulatory burden impacts on smaller manufacturers would lead to a further consolidation of production within a market already distorted by the market-dominance of a small number of large manufacturers;
- **18.** A further exacerbation of already-existing market dominance by a small number of large manufacturers will lead to further and additional purchase price increases borne by consumers, which will inevitably eliminate those at lower income levels from the manufactured housing market and from homeownership altogether;

⁴¹ According to a May 2021 Consumer Financial Protection Bureau (CFPB) report not considered by DOE, 42% of all manufactured home purchase loan applications were denied over the specified reporting period, as compared with 7% of site-built home purchase loan applications.

- **19.** DOE's 2021 SNPR proposed rule is no less costly than its fatally-flawed 2016 proposed manufactured housing energy rule and in fact is substantively little more than a "re-boot" of the wholly-deficient 2016 proposal;
- **20.** DOE's "tiered" proposal is not binding for any final rule, which could and likely will impose the 2021 IECC on an "untiered" basis;
- **21.** Even if DOE's "tiered" proposal were binding which it is not DOE's \$55,000.00 demarcation line between "Tier 1" and "Tier 2" is arbitrary and capricious in violation of applicable law;
- **22.** Even if DOE's "tiered" proposal were binding which it is not a tier demarcation "boundary" based on the manufacturer's retail list price is not synonymous with the customer purchase price and is arbitrary and capricious in violation of applicable law;
- **23.** DOE's \$55,000.00 demarcation between "Tier 1" and "Tier 2" standards is arbitrary and capricious in that it is not based on current or accurate data and information;
- 24. DOE's purchase price impact target of \$750.00 for so-called "Tier 1" homes is itself arbitrary and capricious in violation of applicable law;
- **25.** DOE's 2021 SNPR <u>still</u> lacks a valid, complete and accurate cost-benefit analysis, incorporating <u>all</u> relevant purchase price cost factors, in violation of both the APA and EISA section 413.

<u>Each</u> of these fundamental flaws – both individually and cumulatively – and as is more fully detailed in MHARR's comments to the MHCC, represent a sufficient and compelling basis for the MHCC to reject DOE's August 26, 2021 proposed rule for manufactured housing energy standards.

IV. CONCLUSION

For all the foregoing reasons, the MHCC should <u>reject</u> the proposed manufactured housing energy standards set forth in DOE's August 26, 2021 SNPR as being inappropriate for manufactured housing, excessively costly in violation of applicable law, destructive of the affordable manufactured housing market, not cost-justified, and fundamentally arbitrary and capricious in violation of applicable law, and should submit comments reflecting that rejection (and its bases) to DOE in advance of the existing (or any extended) comment deadline. Sincerely,

1 Mark Weiss

President and CEO

cc: Hon. Jennifer Granholm
Hon. Marcia Fudge
Hon. Shalanda Young (OMB)
HUD Code Industry Producers, retailers and Communities

MANUFACTURED HOUSING CONSENSUS COMMITTEE

1.888.602.4663 | MHCC@HUD.GOV | MHCC@HOMEINNOVATION.COM

Appendix C: MHCC Comments on Energy Conservation Program - Energy Conservation Standards for Manufactured Housing

MANUFACTURED HOUSING CONSENSUS COMMITTEE

1.888.602.4663 | MHCC@HUD.GOV | MHCC@HOMEINNOVATION.COM

MHCC Comments on Energy Conservation Program – Energy Conservation Standards for Manufactured Housing

GENERAL COMMENTS

- The MHCC agrees that the energy efficiency requirements need to be updated but believes the updates should be done incrementally.
- The MHCC urges DOE to extend the written comment due date by an additional 90 days to provide more time for the MHCC to review and discuss the proposed rule.
- The MHCC believes that HUD, not DOE, is the appropriate enforcement body for manufactured housing, but in any event, it will take more than one year to develop an enforcement program for the new DOE standards. An enforcement agency other than HUD would create additional costs and program development.
- The MHCC believes that the proposal in its current state is flawed and should not be implemented as proposed, due to its lack of proper/accurate cost benefit analysis, consideration for manufactured home construction methods, transportation constraints, and testing/enforcement criteria.
- The tiered approach has inequality ramifications that lower income home buyers should have homes with the same level of energy efficiency.

MHCC RESPONSES TO DOE QUESTIONS

Each question below includes the topic and the location of relevant information in the SNOPR.

Question 1 - Manufacturers Retail List Thresholds - 47746-47748 and 47758-47759:

DOE Question: DOE invites comment on whether (1) the manufacturer's retail list price threshold for Tier 1 under the tiered proposal is appropriate, (2) the untiered proposal in this SNOPR is cost-effective, generally, and (3) the untiered proposal is cost-effective for low-income consumers.

MHCC Comments:

(1) No, it is not appropriate. There is no standardized retail cost. The idea that we are going to approve a design for either tier, without a proper cost associated

with the design doesn't work. The retail cost of the unit is not determined during the design phase. The retail cost threshold does not appropriately consider regional differences in cost.

- (2) No, the untiered proposal as proposed is not cost-effective generally or for low-income consumers.
- (3) No, the untiered proposal as proposed is not cost-effective generally or for low-income consumers.

<u>Question 2</u> - Impact of Testing, Compliance, and Enforcement - 47754, 47756-47757, and 47764:

DOE Question: DOE welcomes comment on approaches for testing, compliance and enforcement provisions for the proposed standards and alternative proposal. DOE also welcomes comments and information related to potential testing, compliance and enforcement under the current HUD inspection and enforcement process, and potential costs of testing, compliance and enforcement of the proposed standards and alternative proposal in this document.

MHCC Comments:

All costs imposed by the proposed regulations must be factored into the cost/benefit analysis, and DOE has disregarded any potential costs for testing, compliance, and enforcement. Enforcement, testing, compliance, etc., is part of those costs, and could be significant. Furthermore, if any workload associated with enforcement, testing, or compliance would result as a responsibility of HUD or DOE, resources consistent with that workload must be considered. The MHCC believes that keeping compliance and enforcement with this proposed rulemaking would be best handled by HUD. Any additional cost burdens created by enforcement, testing, and compliance will be passed on to the purchaser.

<u>Question 3</u> - Tiered/Untiered Approach, Price Point for Tiers, and Chattel Loans - 47754, 47756-47757, and 47764:

DOE Question: DOE requests comment on the use of a tiered approach to address affordability and PBP concerns from HUD, other stakeholders, and the policies outlined in Executive Order 13985. DOE also requests comment regarding whether the price point boundary between the proposed tiers is appropriate, and if not, at what price point should it be set and the basis for any alternative price points. DOE also requests comment on its assumptions regarding the use of high-priced loans (e.g., chattel loans) by low-income purchasers, or other purchasers, of manufactured housing.

MHCC Comments:

MHCC does not believe a tiered approach based on retail cost is appropriate. However, If DOE moves forward with a tiered approach, the MHCC believes that single- or multi-section would be the most appropriate metric. The goal is to revise the standards to get the most energy efficient elements that are cost justified. The MHCC recognizes that a tiered system potentially poses an equality concern. Data used by DOE should be as current as possible.

Question 4 - Alternative Size-based and Region Thresholds & Auspicated Data - 47761:

DOE Question: DOE also requests comment on alternate thresholds (besides price point) to consider for the tiered approach, including a size-based threshold (e.g., square footage or whether a home is single- or multi-section). DOE requests comment on the square footage and region versus sales price data provided in the notice (from MHS PUF 2019) and how that data (or more recent versions of that data) could be used to create either a size-based or region-based threshold instead. DOE further requests input on whether there should be single national threshold as proposed, or whether it should vary based on geography or other factors, and if so, what factors should be considered.

MHCC Comments:

MHCC does not believe a tiered approach based on retail cost is appropriate. *However, If DOE moves forward with a tiered approach, the MHCC believes that* single- or multi-section would be the most appropriate metric. Using the sections of a home to define the threshold would be less complicated to implement and will properly reflect the possible disproportion with calculating U values. Using retail cost as a basis for thresholds could lead to situations where, for a single model, multiple plan sets may need to be generated leading to multiple plan review and approvals.

<u>Question 5</u> - Annual Energy Overlook (AEO) Gross Domestic Product (GDP) Inflation – 47761:

DOE Question: DOE requests comment on using the AEO GDP deflator series to adjust the manufacturer's retail list price threshold for inflation. DOE requests comment on whether other time series, including those that account for regional variability, should be used to adjust manufacturer's retail list price.

MHCC Comments:

MHCC does not believe a tiered approach based on retail cost is appropriate and therefore the method for calculating potential inflation is irrelevant.

Question 6 - DOE Standards Implementation Lead Time - 47766:

DOE Question: DOE requests comment on whether a one-year lead time would be sufficient given potential constraints that compliance with the DOE standards may initially place on the HUD certification process, and whether a longer lead time (e.g., a three-year lead time) or some other alternative lead-time for this first set of standards (e.g., phased-in over three years, with one-year lead-times thereafter) should be provided.

MHCC Comments:

The MHCC believes that a one-year lead time would not be sufficient. Major changes to the manufacturer's process, facilities, home designs, and supply chains would be required to comply with the DOE standards. A more realistic time frame for implementation would be a minimum of 5 years.

Question 7 - IECC Definition Proposals - 47766-47768:

DOE Question: DOE requests comment on its understanding of the definitional changes in the 2018 IECC and the 2021 IECC. DOE also requests comments on its changes to the proposed definitions as compared to those proposed in the June 2016 NOPR.

MHCC Comments:

The MHCC has not identified any conflicts with the proposed definitions under this proposed rule.

Question 8 - Incorporation by Reference, Heating/Cooling Sizing/Loads - 47768-47769:

DOE Question: DOE requests comment on incorporating by reference ACCA Manual J, ACCA Manual S, and "Overall U-Values and Heating/Cooling Loads– Manufactured Homes" by Conner and Taylor.

MHCC Comments:

Both Manual J and Manual S consider the orientation and site-specific weather for the home, which is unknown at the time of construction of Manufactured Homes. The adoption of these standards will have a significant cost impact on the home, including the potential of increasing approval time, or frequency of approval. Incorporating these references will complicate the manufacturing process but also increase the overall cost of the units.

Question 9 - HUD (3) Climate Zones vs. Other Climate Zone Options - 47769-47771:

DOE Question: DOE requests comment on basing the climate zones on the three HUD zones instead of the June 2016 NOPR-proposed four climate zones, or other configuration of climate zones. DOE further requests input on whether energy efficiency requirements should be based on smaller geographic areas than provided with the 3 or 4 zone model.

MHCC Comments:

The MHCC strongly supports using the current HUD climate zones for the purpose of this standard.

<u>Question 10</u> - Tier 1 Energy Conservation Standards, Exterior Wall Insulation – 47773-47774:

DOE Question: DOE requests comment on the Tier 1 energy conservation standards, which would be applicable to manufactured homes with a manufacturer's retail list price of \$55,000 or less. DOE also requests comment on the proposed energy conservation standards based on the most recent version of the IECC for the Tier 2 and untiered standards and the consideration of R-21 sensitivity for exterior wall insulation for climate zones 2 and 3.

MHCC Comments:

MHCC does not believe a tiered approach based on retail cost is appropriate. However, If DOE moves forward with a tiered approach, the MHCC believes that single- or multi-section would be the most appropriate metric.

<u>Question 11</u> - Additional Energy Efficiency Requirements, Cost-savings of the Proposal - 47773-47774:

DOE Question: DOE requests comment on the additional energy efficiency requirements from the 2021 IECC and whether they should apply to manufactured homes, including those that DOE has initially considered as not applicable to manufactured homes. If so, DOE requests comment on how these requirements would apply and the costs and savings associated with these requirements.

MHCC Comments: The MHCC believes that the energy efficiency requirements from the 2021 IECC, as currently proposed, are not the appropriate resource to be used in updating Manufactured Housing energy requirements as the 2021 IECC wasn't developed or intended for Manufactured Housing.

Question 12 - Thickness/Density Exterior Ceiling Insulation - 47759, 47778:

DOE Question: DOE requests comment on the proposal to not require that exterior ceiling insulation must have uniform thickness or a uniform density.

MHCC Comments: As it applies to manufactured housing, the MHCC agrees that providing exception to the exterior ceiling insulation thickness/density requirements is necessary to ensure effective insulation techniques for the

manufactured housing industry. The ability to average the R value in the attic is critical to maintaining existing designs and shipping constraints.

Manufactured housing redesign is required (ex. reducing ceiling height or modifying truss designs) and would impact the ability for the Manufactured Housing industry to provide innovative designs and the features consumer's desire. As an example of many additional costs not considered by DOE, the manufactured industry uses many different truss designs and getting a truss tested and approved for use in the HUD standard could cost upwards of \$2500 per design.

Any modifications to the heel height, which would directly affect overall shipping height, would create additional cost and transportation issues that were not considered by DOE in this proposal. Any increase in the shipping height of a home would lead to additional costs such as rerouting units, pilot vehicles, and/or redesign of units.

Question 13 - Glazed Fenestration Limitations - 47778:

DOE Question: DOE requests comment on the proposal not to limit the total area of glazed fenestration.

MHCC Comments: The MHCC agrees that DOE should not limit the glazed fenestration ratio as applied to the prescriptive approach; allowing for flexibility in manufactured housing design and manufacturing methods. MHCC understands that the limit to the total area of glazed fenestration does not apply to the performance approach as this is considered through calculation.

To the extent that DOE bases its requirements on the 2021 IECC, the MHCC believes that fenestration exemptions that exist in the 2021 IECC must also be included.

Question 14 - Roof Floor Decking Insulation Contact - 47779-47780:

DOE Question: DOE requests comment on removing the proposed requirement that exterior floor insulation installed must maintain permanent contact with the underside of the rough floor decking.

MHCC Comments: The MHCC supports DOE removing the requirement that exterior floor insulation installed must maintain permanent contact with the underside of the rough floor decking. It's very important that the manufactured housing industry are exempt from this requirement. It allows manufactured housing to keep the supply duct work, floor framing, and plumbing within the thermal barrier of the house.

Question 15 - IECC Insulation Requirements as it Relates to MH - 47780-47781

DOE Question: DOE requests comment on the proposed updates to the installation of insulation criteria as it applies to manufactured homes construction only.

MHCC Comments: The MHCC has reviewed Table III.13 and does not recommend adding any additional information to the proposed rule. MHCC suggests that language in Table 460.103 regarding baffles be revised to state the following:

Baffles	Baffles, when used in conjunction with eave venting,
	must be constructed using a solid material, maintain
	an opening equal to or greater than the size of the
	vents, and extend over top of the attic insulation.

MHCC suggest that language in Table 460.103 regarding eave vents be removed, it does not appear to be listed in Table R402.4.1.1 of the 2021 IECC and is not relevant to Manufactured Housing.

Eave vents	Air-permeable insulations in vented attics within the
	building thermal envelope must be installed
	adjacent to eave vents.

Question 16 – Access Hatched/Doors and Other Considerations – 47780-47781:

DOE Question: DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking. Specifically, DOE requests comment on whether the 2021 IECC updates for installation criteria for access hatches and doors, baffles and shafts are applicable to manufactured housing and should be considered in this rulemaking.

MHCC Comments: MHCC does not recommend adding any additional information related to installation of insulation to the proposed rule. MHCC does suggest that "doors" be deleted from Table 460.103 under "Access hatches, panels and Doors". Doors are commonly used for exterior access of utility and water heater rooms in certain regions of the country. They are specified by the U-factor requirements already established in section 460.102.

Access hatches, and	Access hatches, and panels, and doors between
panels , and doors	conditioned space and unconditioned space must
	be insulated to a level equivalent to the insulation of
	the surrounding surface, must provide access to all
	equipment that prevents damaging or compressing

the insulation, and must provide a wood-framed or equivalent baffle or retainer when loose fill insulation is installed within an exterior ceiling assembly to retain the insulation both on the access hatch, or panel, or door and within the building thermal
envelope.

Question 17 - Air Barrier Criteria, Air Leakage - 47781:

DOE Question: DOE requests comment on the proposed updates to the air barrier criteria as it applies to manufactured homes construction only. Further, DOE requests comment whether the SNOPR proposal continues to be designed to achieve air leakage sealing requirements of 5 ACH.

MHCC Comments: In the absence of building leakage testing criteria its not realistic for the MHCC to provide proper feedback. There are current requirements and terminology in the proposed rule that do not apply to manufactured homes. There are several sections in proposed rule that would need to be reworded to appropriately apply to the varying types of manufactured houses.

<u>Question 18</u> - Air Barrier Criteria, Recessed Lighting, Narrow Cavities, and Plumbing – 47781:

DOE Question: DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking. Specifically, DOE requests comment on whether the 2021 IECC updates for air barrier criteria for recessed lighting, narrow cavities and plumbing are applicable to manufactured housing and should be considered in this rulemaking. If so, DOE requests comment on whether the requirements would alter the 5 ACH designation.

MHCC Comments:

The MHCC does not find any additional 2021 IECC updates that would be relevant to manufactured housing. Furthermore, the MHCC feels that the option to provide an air barrier behind junction boxes or seal around the Junction boxes should remain as written in table 460.104. MHCC also feels that the rim joist criteria in Table 460.104 should be revised to remove references to sill plates as this is not a typical assembly in manufactured housing.

Recessed Lighting: MHCC does not feel that recessed lighting housings needs specification on air leakage rates as these fixtures are usually IC rated and

significantly airtight especially when considering that they are buried in attic insulation and will be sealed at the ceiling penetration. MHCC does not feel that this will have a significant impact to the 5 ACH design performance goal.

Narrow cavities: MHCC does not feel that additional information needs to be added to the proposed rule for narrow cavities as any such activities are rare in manufactured housing and when they do occur, generally do not disrupt the air barrier and are insulated or gasketed. MHCC does not feel that this will have a significant impact to the 5 ACH design performance goal.

Plumbing: MHCC does not feel that additional information needs to be added to the proposed rule for wiring and plumbing as most often these utilities are routed in the floor systems within the thermal envelope and larger vent piping is already caulked and sealed. MHCC does not feel that this will have a significant impact to the 5 ACH design performance goal.

Question 19 - Duct System Air Leakage - 47784-47785:

DOE Question: DOE requests comment on the proposal to require that total air leakage of duct systems for all manufactured homes is to be less than or equal to 4 cfm per 100 square feet of conditioned floor area.

MHCC Comments: The MHCC believes that total duct leakage is not an appropriate test for a manufactured home because the majority of duct work in manufactured homes are within the thermal barrier.

Question 20 - Thermostat Control Requirements - 47785-47786:

DOE Question: DOE requests comment on DOE's interpretation of R403.1 and the proposed updates to the thermostat and controls requirements. In addition, DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking.

MHCC Comments: The MHCC believes that programable thermostats and other technically advanced thermostats should remain an option for a homeowner. MHCC is aware of the potential energy savings provided by properly used programable thermostats, however the savings are dependent on proper user operation.

Question 21 - Hot Water Service and Temperature Limits - 47786:

DOE Question: DOE requests comment on DOE's interpretation of R403.5 and the proposed updates to the service hot water requirements. In addition, DOE requests comments on whether there are any of the 2021 IECC updates relevant to manufactured housing that should be considered as part of this rulemaking.

Specifically, DOE requests comment on whether the circulating hot water system temperature limit should be included as a requirement.

MHCC Comments: Circulating hot water systems are not typically used in manufactured homes.

Question 22 - Fan Efficacy Standards - 47786:

DOE Question: DOE requests comment on the proposal to include the 2021 IECC fan efficacy standard requirements. DOE requests comment on whether any of the fan efficacy requirements are not applicable to manufactured homes.

MHCC Comments: The MHCC believes that the applicability of the increased efficacy standards would be dependent upon the additional costs associated and return of investment of the increased mechanical ventilation requirements.

<u>Question 23</u> - Heat and Energy Recovery Ventilators (HRV/ERV respectively) – 47786-47787:

DOE Question: DOE requests comment on whether the HRV and ERV provisions under 2021 IECC for site-built homes are applicable to manufactured homes and whether they would be cost-effective. Specifically, DOE requests comment on costs for the HRV and ERV requirements as it applies to manufactured homes in all climate zones.

MHCC Comments: The MHCC believes that HRV and ERV systems are not cost effective for manufactured housing and have proven to be problematic in certain climate zones. Furthermore, the referenced study relied upon (Taylor, Zachary T. Residential Heat Recovery Ventilation. United States) is only based upon standards as they would apply to site-built or "typical residential dwelling units".

Question 24 - Ventilation Strategies Not included in the Proposal - 47787:

DOE Question: DOE requests comment on the above ventilation strategies, including (but not limited to) cost, performance, noise, and any other important attributes that DOE should consider, including those related to mitigation measures. While the alternate ventilation approaches are not integrated into the analysis presented as part of this proposal, DOE is giving serious consideration as to whether it should incorporate one or more of these options as part of its final rule based on any additional data and public comments it receives.

MHCC Comments: The mitigation measures for ventilation strategies are addressed in the Manufactured Home Construction and Safety Standards in section 3280.103(b)(1). Therefore, MHCC agrees with not including alternative ventilation strategies.

<u>Ouestion 25</u> - Exterior Wall Insulation Zones 2 & 3, Sensitivity Analysis - 47802-47803:

DOE Question: DOE requests comment on the cost-effectiveness and feasibility of requiring R-20+5 for the exterior wall insulation for climate zone 2 and 3 Tier 2/Untiered manufactured homes. DOE also requests comment on the sensitivity analysis for R-21 that would result in positive LCC savings for all cities.

MHCC Comments: An R 20+5 exterior wall insulation is neither cost effective or feasible for manufactured housing. Calculations of the R 20+5 in all thermal zones has been shown to provide minimal energy savings, often as little as 3% (when compared to R19 cavity insulation) which inhibits any benefits.

From a production perspective, implementing continuous exterior wall insulation would require extensive upgrading of processes, machinery, and facilities to a point of which could potentially result in significantly increased pricing, diminished supply, potential plant closures and loss of jobs. This process would negatively impact throughput rates of manufacturers and as a result, significantly increase overall costs. MHCC believes that the DOE cost/benefit analysis did not properly address these concerns.

The MHCC would be able to provide more accurate cost analysis and a recommendation on how to properly improve wall insulation if the 90-day comment extension is granted.

Question 26 - Conversion Cost Estimates - 47805-47806:

DOE Question: DOE requests comment on the inputs to the conversion cost estimates.

MHCC Comments: The MHCC believes it is critical to include the cost associated with testing, compliance, and enforcement which are key elements necessary to implement the proposed regulations yet are not included. The overall costs that are required to modify design, production, and assembly are not properly taken into account. Most manufacturing facilities have dozens of truss designs which would need to be redesigned, tested, and approved. As an example of many additional costs not considered by DOE, the manufactured industry uses many different truss designs and getting a truss tested and approved for use in the HUD standard could cost upwards of \$2500 per design. Considering how many truss designs are used by manufacturers, this one additional cost would exceed DOE's overall estimated product conversion cost. Other examples of added cost which would potentially surpass DOE's estimated product conversion cost would be plan review/approval and product/material storage.

Although these costs are initially burdened by the manufacturer, they will inevitably be passed on to the consumer and the overall cost of the unit.

Question 27 - Shipment Cost Breakdown - 47808-47809:

DOE Question: DOE requests comment on the shipment breakdown per tier and using a substitution effect of 20 percent on shipments to account for the shift in homes sold to the lower tiered standard. DOE requests comment on whether it should use a different substitution effect value for this analysis – and if so, why. (Please provide data in support of an alternative substitution effect value.)

MHCC Comments: MHCC does not believe a tiered approach based on retail cost is appropriate therefore any shipments assumptions based on a tiered approach are invalid.

The MHCC believes in order to comply with the proposed rule overall shipments will decrease dramatically as consumers move to more affordable forms of shelter such as vehicles or structures not intended to be used as permanent dwelling units. (ex. RVs or park trailer/model that do not comply with HUD standard and must instead comply with NFPA 1192 and ANSI A119.5 respectively). It is the MHCC's belief that best practice is to try and keep people in manufactured homes that comply with the HUD standard which are safer, designed/built for year-round living, and more energy efficient.

Question 28 - Calculations of Loss (Deadweight) - 47813:

DOE Question: DOE requests comment on the calculation of deadweight loss presented above and the extent to which there are market failures in the no-standards case.

MHCC Comments: The MHCC believes that deadweight loss would be significantly higher than DOE's estimate as many potential consumers will be priced out of the market. For example, NAHB published a study in 2021(NAHB Priced-Out Estimates for 2021), estimating that a \$1,000 increase in the median new home price (\$346,757) would price 153,967 households out of the market. The MHCC believes that an increase of \$1,000 would have a more significant impact on manufactured housing.

Question 29 - Number of MH Manufacturers Producing Homes - 47826:

DOE Question: DOE requests comment on the number of manufacturers of manufactured housing producing home covered by this rulemaking.

MHCC Comments: As of September 2021, there are 138 plants and 33 corporations producing manufactured homes in the country. As a result of this proposed rulemaking, all manufacturers will be negatively impacted.

Question 30 - Cost to Update Model Plans - 47807-47808, 478250-47826:

DOE Question: DOE requests comment on the cost to update model plans and the number of model plans to update as a result of the proposed rule; on the types of equipment and capital expenditures that would be necessitated by the proposal; and the total cost of updating product offerings and manufacturing facilities. DOE requests comment on how these values would differ for small manufacturers. DOE requests comment on its estimate of average annual revenues for small manufacturers of manufactured housing.

MHCC Comments: Smaller manufacturers may not always have the ability to make these changes in house and must rely on external experts which results in higher costs. The MHCC believes that the estimated engineering and third-party review time of 3 hours is too conservative and estimates that the actual time required would be 10-12 hours. As an example of changes needed; each model plan must be revised for physical space impacts, evaluated through calculation for compliance to new thermal envelope requirements, analyzed for structural load path impacts, evaluated for procurement and material changes, and a third-party plan review and approval. One large manufacturer on the MHCC has upwards of 3,000 model plans while data received from a single facility manufacturer estimates 300 model plans.