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I. PREFACE

The U.S. Department of Housing and Urban Development (HUD) spends $6.8 billion annually to operate public housing. Nearly 23 percent of this budget—over $1.5 billion—is spent on utilities to heat, cool, power and provide water for public housing units. Rising energy costs will put increasingly large pressure on HUD’s Operating Fund. Despite the significance of utility costs to HUD’s budget, there is no mechanism for evaluating consumption at the housing authority level. 
In 2003, the Harvard University Graduate School of Design identified utility benchmarking as the most efficient method to assess the potential for utility savings in public housing—where actual, verifiable utility data is not currently collected by a central entity. This led the Office of Public and Indian Housing (PIH) to launch a project to establish a utility benchmarking system.

Utility benchmarking will allow public housing authorities (PHAs) and HUD to assess each project’s energy and water consumption without rigorous or costly evaluation. Understanding that a building uses more energy or water is the first step toward improving that property’s efficiency and, ultimately, its overall financial performance. 

The ability to benchmark utility consumption will greatly facilitate PHAs’ conversion to, and compliance with, Asset Management, which requires greater attention to the financial, physical and management performance of each public housing project. Benchmarking utilities will help PHAs address both financial and management performance. Benchmarking allows PHAs to easily identify, and then make informed decisions about, asset management projects (AMPs) that use more energy and water and cost more to operate than other similar properties.
Benchmarking will address energy and water as commodities, which not only have to be purchased, but also must be delivered to users. The total cost to purchase and deliver these commodities is directly affected by both the supply side—public utilities and other providers—and the demand side—PHA residents, and indirectly affected by the maintenance required for the facilities. Significant reductions to the Operating Fund will require not only utility conservation and efficiency, but also a reduction in related maintenance costs. Both can be achieved by identifying and implementing cost-effective conservation and efficiency measures. 
HUD has already addressed supply-side utility costs by offering PHAs a Rate Reduction Subsidy as an incentive to purchase the lowest priced utilities available. Benchmarking will address the demand side by allowing PHAs to accurately and inexpensively identify and target projects that use utilities inefficiently. As efficiency improvements are implemented on these targeted projects, maintenance costs will also decrease as more efficient procedures and equipment upgrades and replacements improve overall operations. 
This report was prepared by D&R International, Ltd. (D&R), as an account of work sponsored by HUD from October 1, 2004, through September 27, 2007. Views and opinions expressed herein are those of the authors and do not necessarily reflect those of HUD.

II. EXECUTIVE SUMMARY

Models developed during this project show that utility benchmarking can provide a credible, accurate, reproducible means for PHAs to easily ascertain how efficiently utilities are used in their residential buildings. Based on these models, tools that benchmark utility use have been developed to allow PHAs to easily assess the potential for reducing energy and water consumption in their housing stock. The tools provide a ranking score that shows “normal” usage for a particular building and how that building’s usage compares to the norm.

The utility benchmarking models were developed using actual utility consumption data from over 9,100 buildings collected from 349 PHAs nationwide over a 30-month period. This utility data illustrates the great potential for energy savings in public housing because it shows that some of the sampled buildings use more than five times as much energy per square foot than the average for that public housing building type. 

A benchmarking tool’s ease of use is of paramount importance to ensuring that PHAs will use it regularly, as long as this inherent simplicity does not noticeably impact the tool’s accuracy. In its current state of development, the energy benchmarking tool accomplishes this, requiring just seven easily definable characteristics, along with the building’s one-year energy consumption, to generate a building’s benchmark score with a high confidence of validity. 
The water-use benchmarking tool, while showing great promise and providing reasonable results, does not currently have the statistical validity necessary to withstand industry scrutiny as a predictive tool. Appendix B reports on the water benchmarking tool and the additional development necessary to sufficiently improve its credibility. 

Two key findings, neither of which were specifically targeted by this project, emerged from D&R’s evaluation of the data collected: 1) HUD’s public housing is significantly less energy efficient on a per-square-foot basis than conventional private housing, regardless of housing type, which also points to great potential for energy savings; and 2) there is no discernable difference in energy use between public housing residents that pay for their own energy and those for whom energy is paid by the PHA.
Benchmarking the utility usage of individual properties will ultimately facilitate project-based management because it will enable PHAs to more easily determine which properties are the most inefficient and costly to operate. Having a simple, accurate and inexpensive way to determine poor performing buildings that can be upgraded cost-effectively—and save a great deal of money on utility costs over a long-term period—will greatly assist PHAs as they improve the overall financial performance of their property. 

III. INTRODUCTION

This is the final report documenting the three-year development of the Benchmarking Utility Consumption and Cost System (BUCCS), which HUD commissioned D&R to execute specifically for HUD’s public housing. When fully developed, utility benchmarking will allow PHAs and HUD to assess each project’s utility consumption without rigorous or costly evaluation of that property, and can help HUD provide a sound basis for creating utility consumption reduction goals. 

The benchmarking models and associated benchmarking tools were created in association with Oak Ridge National Laboratory (ORNL). D&R and ORNL developed a prototype energy benchmarking model during Year One using actual public housing utility data from HUD Regions II and III to prove that an accurate, easy-to-use benchmarking tool for the PHA audience was achievable. During Year Two, the energy model was expanded and refined to include buildings in all 10 HUD regions and in all U.S. climate zones, and a prototype water consumption benchmarking model was developed. Both models were further refined during Year Three, using additional data that was targeted to fill gaps in the previous datasets. 

PIH funded the development of this utility benchmarking system in support of 24 CFR 990, which revises the regulations for the Public Housing Operating Subsidy, implements a project-based management model in PHAs, and identifies utility benchmarking at the project level as part of the transition to asset management. The regulation further specifies that the benchmarking tool be evaluated in 2009, for implementation by fiscal year 2011. 
Utility benchmarking also supports the Energy Policy Act of 2005, which requires HUD to set public housing energy reduction goals. Historically, providing a fair and measurable basis for energy reduction has been difficult because an accurate assessment of public housing energy has been unavailable. The data collection, modeling, statistical testing and refinement that are going into this benchmarking program will provide this baseline.

The U.S. Environmental Protection Agency (EPA) funded ORNL to assist with the modeling to support the future ENERGY STAR® Multifamily High-Rise Building program. EPA will use the nationwide HUD utility data collected during this project to supplement the limited multifamily Residential Energy Consumption Survey (RECS) data available.
Key Conclusions and Recommendations 

1. The electronic energy benchmarking tool is simple to operate and provides accurate, reproducible results for HUD public housing nationwide. Based on the data collected for this project, this tool provides excellent results with a high degree of confidence. As PIH begins to collect more comprehensive utility use information in fiscal year (FY) 2008, this additional data should be added to the benchmarking model to further improve its accuracy and, thus, its credibility.

2. PHAs should be introduced to the tool at PIH’s earliest convenience in order to have the opportunity to provide feedback on the tool’s operability and results.
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IV. Results 

The final energy benchmarking model is based on the building characteristics and energy consumption data of 3,342 buildings. This represents data collected during all three years of the study, and includes input from 161 PHAs representing all 10 HUD regions. 

Refined Energy Benchmarking Model

Based on the collected data, seven characteristics have a statistically significant effect on building energy use in the benchmarking model. Table 1 lists these, generally in order of decreasing effect, depending on the magnitude of the input value. 

The confidence level in the model’s validity is high when using these key characteristics in the energy benchmarking model. The overall R2 value, a standard predictor of model validity, equals 0.88. Values of R2 range from 0 (no correlation between the building characteristics and energy use) to 1 (a perfect correlation). An overall R2 in the range of 0.6-0.8 is typically considered to be acceptable.
 
Figure 1 shows the types and numbers of PHA developments used for model development. 

[image: image17.jpg]Table 2. Variables Investigated for Impact on Utility Use

Building Type Floor Area — Enclosed Garage |Total No. of Bedrooms
Multifamily Elevator Floor Area — Open Garage No. of One-Bedroom Units
Multifamily Walk-up Occupancy Rate No. of Two-Bedroom Units
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Number of Floors Shared Fuel Oil Meter Heating Degree Days (HDD

Number of Units Central Laundry Cooling Degree Days (CDD)

ICooled Floor Area Units w/Laundry Hookup PHA-Paid Electricity

Heated Floor Area Number of Efficiency Units PHA-Paid Natural Gas

Shared Water Meter PHA-Paid Water PHA-Paid Fuel Oil





In order to develop the model, this effort focused on individually metered buildings and on groups of similar buildings that share utility meters. These groupings could be further defined in relation to AMPs. 

Figure 2 shows the energy use per square foot (the Energy Use Intensity [EUI]) for the public housing buildings sampled and also for all U.S. residential buildings.
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The information in Figure 2 suggests that HUD’s public housing, on average, is less energy efficient on a per-square-foot basis than all U.S. residential households. Although this is consistent with Year One findings, preliminary data published during Year Two of this project had indicated the opposite. After reviewing the Year One and Year Two data and the resulting model, D&R identified data shortfalls for some areas and types of housing, and targeted those for Year Three data collection. This additional data has made the entire dataset more indicative of energy use in all PHA buildings throughout the U.S. 
Because housing authorities submitted the utility data voluntarily, it is possible that preferentially those PHAs that concentrate on energy efficiency responded. D&R investigated and rejected this possibility based on a comparison of all PHA data from 2003. This is discussed further in Section VII. Testing, Assessment and Verification.

There is significant potential for efficiency improvements in this housing. Not only is PHA housing less efficient than U.S. residential housing as a whole, but there is a wide spread in energy use within the PHA data, which illustrates potential savings in public housing. Figure 3 shows EUI distribution by building type: 25th percentile EUIs, the mean and median EUIs, 75th percentile EUIs, and the EUIs for the highest energy-using building for each building type. The wide spread—for walk-ups, it is almost a factor of five—between the median and maximum EUIs represents great potential for energy savings. 
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The data collected during this study show that residents’ energy consumption is unaffected by whether or not they pay their own utilities. The effect of residents paying their own utilities compared to the PHA paying, well documented with a subset of data from almost 650 buildings, was statistically insignificant when predicting energy use. Although utility payments are usually subsidized for residents who pay their own utilities, those residents see the subsidies as reduced monthly rental payments, not as utility offsets, so they should be motivated to save energy.  
Benchmarking Methodology
The benchmarking model is based on Statistical Analysis Benchmarking (SAB) methodology. This methodology was described in detail in the Year One Benchmarking Progress Report (Appendix C), which contains the criteria by which SAB was selected as the best benchmarking methodology for this project. Basically, SAB provides for a regression model-based tool, which is used and accepted throughout the world as a component in business models. 
The type of regression model-based benchmarking tool that supports HUD’s goals was developed by collecting and properly categorizing a statistically significant database of utility usage data and the corresponding physical building characteristics. Other existing tools require either too detailed a level of data collection and modeling or do not support a comparison of such varied and widely dispersed building stock as is required by HUD and PIH. Best of all, a regression model-based benchmarking tool can be designed with simplified inputs so PHAs can easily use it without requiring extensive training or hiring energy specialists. ORNL developed an Excel-based energy benchmarking tool to implement the SAB models.

Data Sets

The utility benchmarking models were developed using actual utility consumption data collected over a 30-month period from 9,129 public housing buildings, submitted by 215 PHAs from throughout the U.S. Another 134 PHAs responded to a limited degree to D&R’s request for data but did not provide meaningful data.  
All data from the 9,129 buildings were considered for inclusion in the model development dataset. All datasets were subjected to the quality control review discussed later in this report. The data that passed the quality control check (Figure 4) and were used to develop the energy model represented 3,342 buildings (representing 2,437 separately metered developments). These datasets were from 161 PHAs in 38 states and represented all 10 HUD regions. The remaining PHA submittals were excluded because they were incomplete, obviously inaccurate or represented buildings sharing utility meters, but for which there was no way to accurately apportion the utility usage among those buildings. 
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V. Model Development

Benchmarking Design Criteria
The energy benchmarking model was developed from nationwide HUD public housing data. The model was designed to cover PIH’s entire residential sector, from high-rise buildings to single-family residences, and to support HUD’s goal of providing a project-based tool that is accurate, credible, reproducible and useful for the following purposes:

· PHAs can easily obtain quick, accurate and objective information, free of any commercial interest, on the energy performance of their properties.

· PHAs can assess the relative energy efficiency of their buildings as preliminary planning prior to pursuing an Energy Performance Contract (EPC).
· PHAs can target energy consumption reductions relative to other PHAs with similar consumption determinants.

· PHAs can target building improvements and, with a good estimate of the amount of savings achievable, reduce their utility consumption.
· HUD can identify improvements attributable to a PHA’s implementation of energy conservation measures.
In December 2004, D&R prepared a white paper (included in Appendix C) presenting an analysis of utility benchmarking systems worldwide. The white paper recommended regression model-based benchmarking as the best and most defensible method of benchmarking residential utility use in public housing. 
After selecting the most appropriate benchmarking methodology, the final benchmarking tool was developed through a three-step process. The first step, documented in the Year One Progress Report, included data collection from PHAs in HUD Regions II and III and development of the proof-of-concept energy benchmarking model based on that data. The second step, documented in the Year Two Progress Report (Appendix D), involved data collection from throughout the U.S., the refinement of the energy benchmarking model and the development of the proof-of-concept water benchmarking model. The final step, conducted during Year Three and documented herein, was collection of additional data to fill perceived data gaps and review and model refinement concurrent with incorporating the additional data.

Model Development
Regression model-based benchmarking requires data sets that produce a statistically meaningful sample of comparison buildings. From this data, summary statistics are produced that characterize the usage intensity in the family of buildings. 

Table 2 shows the variables investigated during the model development phase for their impact on total energy use in buildings. This data was collected from the central HUD database and from PHAs. The studies referenced above, along with building science modeling practices, have shown that these variables can affect building energy and water use.

Stepwise linear regression modeling was used to identify the strongest determinants of building EUI. Using the natural logarithm basis for each variable has been found in previous regression model-based analyses of building EUI to produce a much more normal distribution for the statistical analysis, a stronger correlation between the variables and significantly less error in the resulting model. Regression models, therefore, were initially examined to understand the relationships of yearly energy use to building area, using the natural logarithm of annual utility use as the dependent variable and the natural logarithm of gross building area as the independent variable. 

Energy 

The R2, a standard predictor of model validity, was calculated for each variable to determine that variable’s potential effect on energy use. Figure 5 and Table 3 show the correlations of those individual variables (i.e., the table shows R2 for each individual variable and does not take into account the interactions between variables) that, when taken alone, have the most statistically significant relationships to energy use. The R2 value is a measure of how much of the variation is explained by the independent variable. In other words, if R2 = 0.6 for the energy use in the building area model, the building area explains 60 percent of the variation in energy usage, while other variables would explain the remaining 40 percent. R2 can have a value in the range of 0 to 1 (the higher the better, meaning if R2 = 1.0, it explains 100 percent of the variation, and if R2 = 0.0, it explains none of the variation whatsoever). 
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Variables with a statistical significance level greater than 0.05 are commonly considered to have no statistical significance. Table 3 shows the variables from Table 2 that made that cut—the values are less than 0.05—when each was taken alone as a correlation to total energy use. Note also the column labeled Direction of Impact. Some variables have a positive effect on energy use (i.e., higher values result in higher expected energy use), while others have a negative effect. Floor Area, for instance, has a positive effect on energy use because generally the bigger the building the more energy that is used to heat and inhabit it. The Year Built, conversely, has a negative effect on energy use because older buildings tend to use more energy per square foot. This follows logically also because older buildings generally have less insulation, inferior windows, more leaks, etc. 

All the variables in Table 2 were investigated for their effect on building energy use. Those not listed in Table 3 were excluded for at least one of the following reasons:

1. They did not provide statistically significant correlations to energy use. 

2. They had insufficient variation to have an impact on energy use. 

3. Other supplied variables that were more accurate or appropriate were used in their place (e.g., Total No. of Bedrooms was a more appropriate predictor than Total No. of One-Bedroom Units + Total No. of Two-Bedroom Units +….).  

As discussed above, regression models using natural logarithm as a basis for each variable produce a much more normal distribution in the resulting model. The resulting expression for energy use generally takes this form:

Ln[EU] = Ln[C0 + C1 x V1 + C2 x V2 + C3 x V3 + …] + e, where

Ln
=
Natural log

EU
=
Total building yearly energy use

C0
=
Calculated intercept coefficient

C1
=
Calculated coefficient associated with measured variable V1

V1
=
Value of measured variable V1

C2
=
Calculated coefficient associated with measured variable V2

V2
=
Value of measured variable V2

C3
=
Calculated coefficient associated with measured variable V3

V3
=
Value of measured variable V3
And e is an error term, which usually averages out to 0, indicating that the model does not fit the data perfectly.  
In practice, the natural log is only taken for some of the variables and the other variables are used in their absolute value; whatever combination leads to the best correlation was chosen. 

After narrowing down the list of variables to those in Table 3, energy use was calculated using different combinations of the remaining variables to determine which combination of variables best predicted energy use. Variables that showed the least significant effect on energy use when used in combination with the other variables of potential significance were removed from the analysis in an iterative process. Table 4 lists the seven variables that are the most common and strongest indicators of yearly energy use in the sampled buildings. 

	Table 4:  Energy Modeling Results

	Model Variable
	Variable Coefficient
	Calculated

Variable

Coefficient

	Ln Gross Floor Area
	C1
	0.7138

	HDD x % Heated/10,000
	C2
	0.0019

	Ln Number of Units
	C3
	0.3794

	Multifamily Walk-up
	C4
	-0.1435

	Year Built
	C5
	-0.00573

	Has Laundry Facilities
	C6
	-0.304

	Unit’s % of Total Building
	C7
	0.0034


Note in Table 4 that a large calculated variable coefficient (CVC) does not necessarily mean that variable drives the expected energy use. It is the CVC multiplied by the corresponding variable that dictates that characteristic’s overall effect, so the larger the variable (e.g., floor area or number of units), the larger the effect on expected energy use. If the value of the variable is low, then the product of the two multiplied together is proportionally low. For instance, for a 100-percent heated, 50,000-square-foot, 40-unit, 90-bedroom residential building with an elevator and laundry facilities built in 1970 in Rochester, Minnesota, in which the PHA is billed directly for all utilities, the relative effects of selected variables are as follows:

Floor Area effect = C1 x V1 = (0.7138 x Ln 50,000sf)  = 7.72
No. of Units effect = C3 x V3 = [0.379 x  Ln 40 units] = 1.40
Year Built effect = C7 x V7 = Ln [0.00573 x  1970] = -11.29
From the above example, it is obvious that Floor Area and Year Built strongly drive anticipated energy use, as expected, because the bigger the building and the older it is, the more energy it will use. The number of units has a much smaller proportionate effect because much of the energy usage is already explained by the size of the building.
In this correlation (C0 = 17.85 for the energy model), the expected energy use for this example becomes:

Ln[EU] = 17.85 + (0.7138 x Ln 50,000sf)  + (1.934 E-7 x 8256) + (0.379 x  Ln 40) - 0.1435
x 0.0 – (0.00573 x 1970) – (0.304 x 1) + (0.0034 x 1/40) = 15.43;
thus EU = e15.43  = 5,005,260
EUI = EU/square footage = 5,005,260/50,000 = 100 kBTU/sf/year
CVCs with negative values correspond to an inverse effect on energy use. For instance, the Year Built coefficient, C5 = -0.00573, when multiplied by the year the building was built, becomes increasingly negative with newer buildings, meaning that newer buildings are expected to use less energy. That makes sense because buildings built more recently must meet more stringent building codes. 
Effect of Resident-Paid Versus PHA-Paid Utilities

One of the areas explored during development of the benchmarking model was if residents’ usage was affected when the resident paid directly for their utilities. Many PHAs receive and pay all utility bills with no direct involvement of the residents. Other PHA residences are individually metered and the residents pay their own utilities. 
It is difficult to acquire utility data for residences that pay for utilities directly. PHAs usually do not keep these records since the residents are billed directly. However, D&R collected data on 648 buildings with full tenant-paid utility information. This information is sufficient to determine what, if any, statistical difference exists between the energy and water consumption habits of tenants who pay their own utility bills, versus tenants who do not receive utility bills because the PHA pays them.
Table 2, shown above, includes the four variables related to this part of the investigation that were considered to determine if they reflected measurable differences in utility usage: PHA-paid electricity, PHA-paid natural gas, PHA-paid fuel oil and PHA-paid water. The three energy-related variables were combined as a single variable—energy paid by PHA—which was then analyzed to see if it had statistical significance. Similarly, in the water model, PHA-paid water was analyzed to judge its significance.
Table 3, above, shows that this variable, when taken alone, could have some statistical significance in the energy model. Considering that the energy-paid-by-PHA correlation is very small—R2 = 0.0168 on a scale of 0 to 1—the impact on energy use would likely be very small, although it is within the range of other variables that do have an effect on predicted energy use. In fact, when taken in combination with other significant variables, the effect of energy-paid-by-PHA on energy use was negligible. 
It is also noteworthy that the effect of energy-paid-by-PHA on energy use, as represented by its negative sign in Figure 5 and Table 3, suggests that when the PHA pays the bills, the residents use less energy. This is counterintuitive because it suggests that if residents do not see their bills, they are more likely to minimize their energy use. In this case the negative value is probably more a reflection of its statistical insignificance, in that it is very small—in the “noise level” of the data.

Date of Construction

The age of the building impacts how a building scores in the energy model. This is not surprising because, due to increasingly stringent building codes, residences are built tighter (less air leakage), with better windows, more insulation, and more efficient lighting and mechanical systems.

Because the benchmarking model uses actual data, this decreasing efficiency with age is captured in the model. Thus, for the same annual energy consumption, a building built 10 years before a comparable building will have roughly a five-point comparative advantage in the score (out of 100) compared to the HUD average. This is illustrated in Tables 5a and 5b and Figure 6, below. The concern is that PHAs with old, inefficient residences will be led to believe that their buildings are efficient compared to the average building when, in fact, high-scoring older buildings are efficient only compared to comparably old buildings.  

Tables 5a and 5b and corresponding Figure 6 show how, for a given yearly energy consumption, a building's score varies with building age. In Table 5a, the scores of a 1,560-square-foot, single-family attached building in Rochester, Minnesota, are examined. This building contains two units, each with two bedrooms. It was built in 1981 and used 5,248 kWh of electricity and 1,528 therms of natural gas annually. Table 5b represents a 2,336-square-foot, four-bedroom, single-family detached home in Sioux Center, Iowa. It was built in 1910 and uses 3,650 kWh of electricity and 3,245 therms of natural gas annually. Figure 6 shows graphically how the benchmark scores would vary depending with building age in both cases, holding annual energy consumption constant.
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The effect of building age on predicted energy consumption would not be as strong in a building that has had energy-efficiency upgrades, because the efficiency of such buildings would obviously have been improved relative to their peers. As discussed is Section VI, Data Collection, challenges inherent in this type of voluntary data gathering activity precluded the collection of detailed data that would be necessary to quantitatively incorporate the effect of energy and water upgrades. Fortunately, knowledge of building upgrades is not critical to a benchmarking methodology because the benchmarking model accounts for this effect. The demonstrated validity of the model (Section IV, Results) bears this out. With enough data all performers, good and bad, are statistically represented and the resulting benchmark score will be good for the good performers and bad for the bad performers, as it should be. 
VI. Data Collection

An SAB model is only as accurate as the actual, measured data upon which it is based. D&R reviewed available nationwide utility databases that might support a statistically based public housing benchmarking model and concluded that the best, most defensible data would have to be collected directly from PHAs.  

Because PHAs would be voluntarily completing the survey forms, and each PHA administers many buildings, the forms had to be designed to be quickly and easily completed. After compiling as much data as possible from HUD databases, D&R created several different prototype versions of the data collection forms to gather information that was not yet compiled but was perceived to be necessary. After developing a preliminary survey in consult with ORNL and other energy and water specialists and references, D&R went to three PHAs of different sizes—one each in Maryland, West Virginia and Delaware—to discuss the survey and to have them try it out. 

It was immediately apparent that the personnel assigned to complete the data surveys would vary greatly depending on the PHA and who would be available to complete the survey at the time it was distributed. For that reason the survey questions had to be very straightforward and unambiguous. Also, because PHA staff is already burdened, almost any research to support this voluntary effort, beyond what was within easy reach, was out of the question. Based on the trials discussed above the data collection forms were revised accordingly and subsequently sent through HUD clearance and then approved for distribution by the U.S. Office of Management and Budget.
D&R created a Web-based data collection system to collect the necessary and appropriate data directly from each PHA. Correspondence was sent to all PHAs in the U.S. requesting that they complete the forms for each project under their purview. 
The benchmarking models were based on the data collected as of June 2007, by which time completed forms were received for more than 9,100 buildings (out of the 248,879 in the HUD public housing stock) from over 200 PHAs. 
Other Data Sources
The utility use databases most carefully examined include the following:

1. Forms HUD-52722-B, as completed by each PHA and compiled by HUD 

2. RECS, compiled by DOE’s eia

3. Regional entities, such as the New York State Energy Research and Development Authority (NYSERDA) and the California Energy Commission (CEC)

4. Public utilities, such as the Madison Gas and Electric Company

Data collected from completed HUD-52722-B forms would not adequately support this benchmarking model for several reasons. Most importantly, form HUD-52722-B, now discontinued, reported utility costs, not utility usage. Also critical, form HUD-52722-B reported PHA-wide utility usage, not project use, so it would not support the accurate project-based asset management business model required by the interim-final rule. Important building characteristics, such as gross square footage, are not available on HUD-52722-B forms or in any other centralized database. These characteristics can be estimated by using HUD guidelines and rules of thumb, but this introduces uncertainties that would complicate the defensibility of the benchmarking system. 

RECS data can be used to supplement the PHA data. RECS provides more complete building and utility usage data than form HUD-52722-B, but the small number of nationwide samples on which RECS is based compromises its statistical usefulness. For multifamily buildings, RECS data is compiled from less than 200 residential units—units located inside multifamily buildings, not the buildings themselves. That is a small data set, and by using data on residential units, the effects of common and shared spaces are left out of the utility use profile, decreasing the potential accuracy. 

NYSERDA was helpful in providing utility usage and building characteristics for several multifamily public housing projects, which D&R has entered into the PHA database. Madison Gas and Electric Company provided a technical report of their own benchmarking activities, which included valuable data on several multifamily housing projects in Madison, Wisconsin.

Generally, regional databases, such as those from CEC and NYSERDA, can be used to supplement other regional data, but cannot accurately be used alone as the basis for a defensible national model. Regional data represents too narrow a range of construction practices and climate, and does not capture the differences in lifestyles that can lead to different utility consumption levels. Water usage, particularly, cannot be extrapolated for different regions based on specific regional data because of the rainfall differences and the effects on watering and irrigation. Furthermore, basing a public housing benchmarking model on these types of databases causes the same defensibility issues as a RECS-based model: the data typically represents the total residential population, not just the public housing community.
Data Collection
D&R created a Web-based system to collect the necessary and appropriate data directly from each PHA in HUD Regions II and III during Year One, and in all 10 HUD Regions in Years Two and Three. This Web-based data collection system facilitated the data input process for the PHAs by providing data input forms for each building administered by each PHA. The system allowed each PHA to fill out the forms and submit them online, or print out a hard copy of each form, complete the form(s), and fax or mail the form(s) to D&R. Appendix II of the Year One Progress Report contains a sample form.

D&R responded immediately to all e-mail, fax and telephone inquiries and questions. Some larger PHAs declined to participate in this voluntary effort because of the burden of collecting and entering data for such large inventories. Unresponsive PHAs, particularly several in HUD regions where data was in short supply, were encouraged to enter information for only a small fraction of their inventory. Some did, but many PHAs still declined. D&R was able to gather some additional information onsite by visiting several PHAs and working with their staff to explain the system and, in some cases, to help the staff compile information.
VII. Testing, Assessment and Verification

Accurate utility usage data are critical to developing and verifying an accurate benchmarking system. Quality control has been maintained throughout the data collection and compilation process to ensure that the data are correct and applicable to this project.  

Because of the volume of data, the wide variety of buildings from which it originates and the different ways each PHA compiles data, the collection system automatically provides two layers of quality control. First, the system automatically screens the information input for apparent anomalies. Expected ranges were established for each input, whether it was for building characteristics, utility usage or utility cost. These expected ranges were based on normal usage patterns in similar buildings and climates. If inputs fell outside any of these respective ranges, the user received an electronic warning to verify the number. If the user kept that data entry or re-entered another number outside the expected range, the warning reappeared. Unless the final entry fell within an acceptable range, the user would have to contact D&R to discuss the inputs to ensure that they were correct. Some of the apparent anomalies were real (e.g., the reported consumption data may be extremely high because the properties are poorly built, badly operated and/or otherwise non-standard in construction or operation). Some anomalies, however, were due to PHAs incorrectly gathering or compiling the data, or inputting the wrong units of measure (e.g., inputting 103 cubic feet of natural gas when the bill actually said 103,000 cubic feet).

The collection system provided a second layer of quality control by comparing expected and reported costs. Users were asked to supply both the utility usage and the corresponding utility cost. The usage, combined with the corresponding expected cost per unit of energy, water or sewage, was compared with the cost input by the PHAs. An electronic warning appeared if these numbers did not match, and D&R followed up to resolve the discrepancy.  

In addition to these filters, D&R reviewed each completed building data set for reasonableness before passing it to ORNL for incorporation into the benchmarking model development. When apparent anomalies were detected, the PHA was contacted to discuss that particular input to ensure its veracity. As the benchmarking model was developed, “outliers” (buildings whose utility usage is outside the range of similar buildings) were investigated in a similar manner.
Figure 7 shows a breakdown of the development and building datasets by HUD region that were used in the energy benchmarking model. Figure 7 also shows the numbers of PHAs in each region that contributed this usable data. 


After observing early in the data collection effort that PHAs appeared generally to use less energy per square foot than the U.S. population as a whole, D&R was concerned that PHAs that are interested in energy efficiency (i.e., those that have done the most to maximize their efficiency) were preferentially responding to the voluntary effort to submit data to this project. As the project progressed and more data was gathered, the complete dataset verified that PHA residences do, in fact, use more energy per square foot than the U.S. population as a whole, which is consistent with DOE’s eia data. 
D&R decided it was valuable to show whether energy-efficient PHAs were preferentially contributing data for this study. By using data from forms HUD-52722-B for all PHAs, D&R was able to quantitatively show that this is not true. 
According to form HUD-52722-B, for all PHAs, the nationwide average annual utility cost of a PHA unit is $621. The average annual utility cost per unit of PHAs that submitted data is $672. This suggests that PHAs that submitted useable data for benchmarking are, in fact, slightly less energy-efficient than those that did not submit data. 

Since many of the PHAs that submitted data were from the northeastern U.S. due to the Year One focus on that region, and because buildings typically found in cold climates have higher annual energy costs, D&R examined the PHAs by climate zone. DOE’s Building America program divided buildings into climate zones, and PHAs were apportioned by state as closely as possible (several states include more than one climate zone) among those climate zones. Figure 8 shows the comparison between PHAs that provided data and those that did not. 
Although these analyses of the same phenomenon show significant variation in the comparison of utility costs of data-submitting PHAs to non-data submitting PHAs, the results are the same: ultimately, PHAs submitting data to the Benchmarking project were not necessarily those that had achieved higher levels of efficiency than the norm.


VIII. KEY RECOMMENDATIONS FOR FUTURE ACTIONS  
The following action items are recommended as the benchmarking tools are deployed and further developed.

1. As utility data becomes available in 2008, add that actual data—after it has been verified—to the energy benchmarking model to improve the model’s accuracy and credibility. This will dispel any concerns that all HUD regions are not properly represented and that self-selection may have skewed the benchmarking models.
2. Roll out the and energy-use benchmarking tool for PHAs and related associations to use and provide feedback. 

IX. USER’S GUIDE TO THE ENERGY BENCHMARKING TOOL

The energy benchmarking tool is remarkably easy to use; just fill out the gray spaces on the electronic form and it automatically ranks the building (or project) on a scale of 0 to 100, where 0 is the worst, 100 is the best and 50 is average. In addition to the building’s yearly utility usage information (electricity and fuel) and the corresponding units (kWh, therms, gallons, etc.), the tool—as currently configured—requires only seven inputs, all of which are either very obvious or easily obtainable:

1. Zip code (to automatically input climate data)

2. Gross floor area (square feet)
3. Number of units

4. Number of bedrooms

5. Single-family or multifamily building

6. Percent of the floor area that is heated

7. Building age (year it was originally built)

The following are several examples using actual PHA residences. 
The first is a row house development in Lexington, Kentucky, of 12 buildings with 43 units total. It was originally built in 1953. Because all 12 of the buildings in this development share one set of utility meters, for the Building Description inputs in this example, the user must sum up the totals in each category (gross square footage, number of units) for all buildings. The buildings all share one electric meter and one natural gas meter, so the Annual Consumption inputs are easy.
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Note in the Results section of the above example that this is a relatively efficient building, as shown by its Score Against Peers of 75.
The second example is a development of six separate buildings in Boulder, Colorado, containing six row houses with 36 units. The development has a central laundry. The buildings all share one electric meter and one natural gas meter, so the Annual Consumption inputs are easy.
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Note that the Score Against Peers for this development is 60, which is relatively efficient. To make the building more energy efficient, which would increase its score, the development could incorporate some cost-effective energy savings opportunities as determined by an energy audit.
The next example is a single-family, single-story detached three-bedroom home in Los Fresnos, Texas, which scored a 46. The score is below the HUD average of 50, so it is worth investigating the possibility of improving the building’s energy efficiency.
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The next building is a three-floor multifamily walk-up with eight units in Hartford, Connecticut. It’s score is only 29. The PHA should target this building—and any similar buildings—for an energy audit. Note also that the energy prices (Calculated utility cost) are very high: 14 cents per kWh for electricity and $1.53 per therm for natural gas. This building is ripe for energy-efficiency improvements and utility cost savings.
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The final example is a relatively new single-family, detached, one-story, three-bedroom, all-electric home in Huntington, Oregon, with a high score of 86, indicating it is very efficient.
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For multifamily buildings, RECS data is compiled from less than 200 residential units—


units inside the buildings, not the buildings themselves.





The data collection system automatically provides two layers of quality control.











�R2 in the ENERGY STAR commercial building energy benchmarking models is typically below 0.85.


�As represented by RECS, compiled by the Energy Information Administration (eia) of the U.S. Department of Energy.
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