	

	DATE
	REVISION
	xxxBYxxx
	Future State Technical
Architecture Guidelines
for the
Application Development Practice
	[image: image1.png]ENTERPRISE ARCHITECTURE PRACTICE
202-708-1821, ea_team_support@hud.gov

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	DATE: March 26th, 2003
	

	
	
	
	DRAFT
	

	[image: image2.png]

	[image: image3.png]BLUEPRINTS

TolUILpING T ToGETHeR

&
2

	

Table of Contents

3Introduction

3Section 1. Principles for the Application Development Practice

4Section 2. Key Technologies and Application Delivery Frameworks

6Section 3. The J2EE Specification

10Section 4. J2EE Implementation Guidelines

11Section 5. J2EE Deployment Environment

11J2EE Development Environment

12Section 6. .Net Application Delivery Framework

14Section 7. .Net Implementation Guidelines

15Section 8. .Net Deployment Environment

15.Net Development Environment

Introduction

This document represents the second part of the Future State Technical Architecture, and serves as technical direction for application developers, project sponsors and project managers in determining the Enterprise Architecture compliance of planned solutions.

Section 1. Principles for the Application Development Practice

In the interest of maintaining a flexible, maintainable and managed information systems environment and minimizing the Total Cost of Ownership (TCO) of its systems, HUD’s Enterprise Architecture Practice recommends that developers deliver applications using a chosen methodology compliant with the revised HUD SDM
 and satisfying the following principles:

1. Systems are created based on a fully documented requirements specification that is reviewed for mission (business architecture) compliance, baselined and maintained throughout the development life cycle.

2. Systems are architected before they are designed. Systems architecture is documented for each system. Systems architecture documentation is verified for EA compliance, baselined and maintained throughout the life cycle of the system.

3. Systems are designed before they are built. System designs are documented, baselined, reviewed for technical merit and maintained throughout the life cycle of the system.

4. Systems design components are modeled using a chosen set of automated modeling tools. Models are maintained in a standards-based automated relational model repository. Configuration management practices are used to work with the model repository throughout the development life cycle.

5. Applications code is fully documented. Systems documentation is maintained throughout the life cycle. For COTS systems, application components and configurations take the place of the application code.

6. Application code is maintained using a standard automated, relational code repository. Configuration management practices are used to work with the model repository throughout the development life cycle.

7. Systems are developed using current best practices for the appropriate type of application. Rapid Application Development (RAD) practices and tools must not be used to develop enterprise applications with life expectancies exceeding two years. Such systems must be developed using the managed life cycle practices described above. Prototyping, proof-of-concept development and piloting (beta-testing) must be utilized in developing enterprise applications. SDLC guidance to developers must be flexible and reflect current industry best practices.

8. The choice of a systems acquisition method (buy/build decisions) must take into account functional characteristics of proposed systems. Federal Enterprise Architecture Service Component Model, HUD’s Application Reference Model and Applications Architecture (currently in development) serve as guidance for these decisions. Typically, systems automating the core business functions of the Department (such as loan insurance or housing asset management), where it is important to reflect unique processes to gain competitive advantage, are candidates for in-house development. Common, cross-cutting functions (such as accounting, facilities management or procurement) should be automated using industry-standard practices and COTS products.

Section 2. Key Technologies and Application Delivery Frameworks

In its Future State Technical Architecture, HUD’s information technology environment was described in terms of a four-layer taxonomy. In its second layer, a set of Key Technologies has been identified for each of the Functional Services to provide a high-level framework for making technology choices. Within the Application Delivery Service, the Key Technologies layer represents a set of standards-based Application Delivery Frameworks. Each Framework groups appropriate Key Technologies and Architectural Components in a functionally significant, industry-supported set of standards, Application Programming Interfaces (APIs), tools and protocols that allow software product providers and application developers to create technologically consistent solutions.

In terms of the Future State technical architecture, strategically significant Application Delivery Frameworks are Java 2 Enterprise Edition (J2EE) and .Net (Dot Net). A Legacy Application Delivery Framework includes most of HUD’s current application portfolio. Analysis of this portfolio and planning recommendations for bringing it into compliance with the Future State Technical Architecture are included in a EA Technical Memorandum, Application Portfolio Analysis Review.

Of the two strategically significant Application Delivery Frameworks, the EA Practice recommends J2EE for enterprise development. This recommendation was based on the following analysis.

1. The J2EE specification represents the most mature current technology and enjoys wide-spread, multi-vendor industry support.

2. J2EE satisfies most of HUD’s Technical Architecture principles as follows:

a. it uses the Internet as the delivery medium (Principle 1);

b. a large number of architectural components and products required for deploying J2EE applications are already available at HUD (Principle 3);

c. it allows the use of non-vendor specific tools and methodologies (Principle 4);

d. it is based on industry-wide standards (Principle 5).

3. Most current best practices-based methodologies for systems engineering and application development are created with Java enterprise development in mind.

4. It uses a deployment infrastructure that satisfied HUD’s requirements for performance, scalability and security.

The EA Practice recognizes the competitive nature of Microsoft’s .Net Application Delivery Framework, as well as advantages for developers that a single-vendor Integrated Development Environment (IDE) provides. The .Net Framework is thus considered a “Supported” application delivery framework. It is best suited for use in creating solutions with a large previous investment in Microsoft tools and technologies that don’t require high scalability and/or security. In practical terms this applies to small- and medium-size applications (less than 500 transactions per minute) mostly confined to HUD’s intranet. In any event, the use of .Net for new development should be justified by functional business reasons (existing code base, extensive prior investment, availability of reusable modules/libraries/repositories, etc.). The cost of systems development and the availability of contractor skills are not considered business justifications.

At the current stage of the technology evolution, the J2EE framework is best suited for enterprise systems development at HUD due to the maturity of the framework and the characteristics of the deployment platform(s). Any discussions regarding its technical superiority relative to the Microsoft’s .Net technology (or lack thereof) are inappropriate at this time.

Section 3. The J2EE Specification

This document does not pursue the purpose of providing a comprehensive architectural description of the J2EE Application Delivery Framework. Extensive literature exists containing such descriptions.

The J2EE framework is designed to provide server- and client-side support for developing distributed, multi-tier enterprise applications. As shown in Figure 3-1, such applications are typically designed with the client tier providing user interface and content presentation services, one or more middle-tier modules (Web server and application servers) that facilitate client services and provide business logic execution for the application, and the back-end data services tier that provides access to enterprise data repositories (databases).

The J2EE specification was originally developed by Sun Microsystems and is supported by a consortium of vendors and industry groups, as well as by the open source movement community. Although the actual copyright of the specification belongs to Sun, the World-Wide Web Consortium and IEEE play an important role in maintaining the J2EE as an industry standard.

Figure 3-1. J2EE Component Architecture

[image: image4.wmf]Client

Browser

Web Server

HTTP Server

Servlet Engine

Java Server Pages

Controller Servlet

Presentation

Logic

HTML, JavaScript, Applets

Application Server

Session EJB

Entity EJB

JDBC

Data Server

RDBMS

Business

Logic

Business

Processes

Business

Models

The J2EE framework is based on a number of important concepts that make it a desirable platform for enterprise development at HUD. The most crucial of those are the managed component architecture, extensibility and container-based asynchronous execution.

The J2EE specification is defined through a set of related technologies. Key among them are the Enterprise JavaBeans specification, the Java Servlet specification, and the Java Sever Pages specification. Compliance of a J2EE implementation is verified through the use of the J2EE Compatibility Test Suite. Additional standards-based components of the J2EE Specification are the J2EE Reference Implementation and the J2EE Systems Development Kit (SDK).

J2EE Components

JavaServer Pages (JSP): Generate dynamic content for Web browsers and mobile devices. Are functionally similar to HTML.

Servlets: Provide control and navigation logic for J2EE applications; typically used in conjunction with JSP in a Model-View-Controller design pattern.

Enterprise JavaBeans (EJB): Core component of the platform, can be implemented as session beans (model business logic) and entity beans (model persistent data). EJBs provide transparent scaling, a security framework, a transaction model, and a container-managed life cycle.

Java Connector Architecture (JCA): Facilitates connectivity of Java applications with non-Java enterprise applications. JCA allows for passing of transaction and security roles from a J2EE to a legacy application, making them usable within a J2EE system.

Java Message Service (JMS): Provides asynchronous messaging capability to the J2EE platform. Message-oriented middleware exists for interfacing with key vendor messaging products (IBM MQ Series).

Java Management Extensions (JMX): Provide standard J2EE server and application management interface.

Java Naming and Directory Interface (JNDI): Provides component location transparency, facilitating the distributed nature of the specification.

Java IDL: provides a mechanism for calling distributed services defined as non-Java object (using CORBA specification).

Java APIs for XML: provide support for integration with legacy systems and applications, for implementing Web Services within the J2EE framework.

Java Database Connectivity (JDBC): Technically part of the J2SE specification, included into J2EE to handle database input/output via SQL.

HotSpot Virtual Machine: When running in server mode, provides thread and memory management services to the application, taking care of most initial performance concerns of the J2EE platform.

The J2EE Compatibility Test Suite (CTS): helps maximize the portability of applications by validating the specification compliance of a J2EE product. The CTS tests the conformance of developed product to the Java standard APIs as well as the J2EE platform’s ability to run the end-to-end application.

The J2EE Reference Implementation is a complete implementation of the J2EE standard provided by Sun Microsystems, representing an operational definition of the J2EE specification. It allows product developers and tool vendors to determine what their product must do under a particular set of operational circumstances.

The J2EE SDK, based on the J2EE Reference Implementation, is provided to the developer community to help expedite the adoption of the J2EE standard. While not available for commercial use, it’s useful as a vendor-independent prototype development environment as well as for testing and compliance verification purposes, producing “clean” J2EE compliant code.

The J2EE also includes a flexible security model, capable of employing security tools and methods at a number of levels, from protocol encapsulation to code examples, satisfying a full range of security policies and system security requirements. The J2EE security model is designed to support single sign-in access to application services. Developers can specify security requirements at a method level to ensure that only users (or objects) with specific security permissions have access to specific processes and data operations.

Integration of a J2EE System with Existing Enterprise Systems (Typical Case)

The J2EE Specification includes a number of standard APIs for accessing existing systems (see Figure 3-2).

The J2EE Connector Architecture (JCA) provides the infrastructure for interacting with a variety of a late-generation, mostly COTS enterprise information systems, such as Enterprise Resource Planning (ERP), Customer Relationship Management (CRM) and others, including those implemented with IBM’s CICS and IMS technologies. Enterprise beans can combine the use of connector access objects and service APIs with middle-tier business logic.

The JDBC API is used for accessing relational data from within the Java language.

The Java Transaction API (JTA) is used for managing and coordinating transactions across heterogeneous enterprise systems.

The Java Naming and Directory Interface (JNDI) is the API for accessing information in enterprise name and directory services.

The Java Message Service (JMS) is the API for sending and receiving messages via enterprise messaging systems such as IBM MQ series. In J2EE version 1.3, message-driven beans provide a component-based solution to facilitating messaging functionality.

The JavaMail API is used for sending and receiving e-mail, as well as interfacing with e-mail aware applications (IBM Domino/Lotus Notes, Microsoft Exchange, etc.).

Figure 3-2. J2EE Components and Integration with Legacy Systems
[image: image6.wmf] Enterprise Intranet

Internet

Web

browser

Web

browser

Web

browser

Web

browser

Web

browser

Oracle

Sybase/

SQL Svr.

DB2

J2EE Server

Sun ONE

Web

Server

Servlet

Servlet

Servlet

H

T

T

P

S

H

T

T

P

S

HTTP

H

T

T

P

H

T

T

P

LDAP

DNS

Message

service

Transaction

service

J2EE Server

Sun ONE

EJB

Bean

EJB

Bean

EJB

Bean

EJB

Bean

Java

client

Java

client

R

M

I

/

I

I

O

P

R

M

I

/

I

I

O

P

JDBC

JNDI

RMI/IIOP

Data Servers

Name Servers

Java Distributed Objects

Legacy Distributed Objects

Other Enterprise Services

CORBA

JMS

JTA

JTA

JTA

CORBA

RMI/IIOP

JNDI

JDBC

Section 4. J2EE Implementation Guidelines

1. No client-side Java.
In support of its Technical Architecture Principles, HUD’s EA Practice strongly discourages deployment of applications with client-side Java execution. Exceptions to this include special-purpose functional requirements such as power-user data mining, GIS, or infrastructure monitoring.

2. The need for training.
With all its benefits for enterprise development, J2EE is a complex specification including a large number of advanced technologies, and requires competent skills in systems architecture, design, and Java programming, as well as special project management and development methodology knowledge. It is recommended that HUD’s Application Delivery Practice makes training in J2EE development available to its staff in advance of engaging in large-scale J2EE projects.

3. Use J2EE where appropriate.
The use of J2EE for developing applications without the discipline or life-cycle controls of a mature systems development practice is discouraged.

4. Use best practices in J2EE development.
It is recommended that a mature systems development methodology satisfying principles stated in Section 1 of these Guidelines, such as Rational Unified Process, be identified and recommended as a standard for J2EE development.

5. Make performance a design requirement.
Performance must be a design consideration for any enterprise application, but is of especial significance to J2EE development due to the highly distributed nature of the specification, different performance characteristics of different components of the specification, and the network-centric nature of J2EE deployment. Thus, any J2EE development project must create an Application Performance Profile in advance of any coding taking place, analyze its infrastructure implications and communicate its capacity requirements to the IT Operations organization.

6. Use good Java programming.
Regardless of the standardized nature of J2EE components, prudent Java programming practices must be employed in J2EE development. Formalization of Java programming practices within the specification (e.g., no thread creation in EJB, or object-based state inheritance) does not relieve programmers of their responsibility to create good designs and code. Examples of most common mistakes: overloading the garbage collector, indiscriminate use of threads, and excessive state persistence.

7. Take advantage of product features.
In spite of the standard nature of the J2EE specification, each part of its deployment infrastructure (application server, browser, Web server, data server, etc.) represents a product designed by a software vendor using a particular architectural philosophy and specific design choices. This results in a number of special features, product characteristics and requirements. HUD maintains a highly standardized systems deployment environment, with supported deployment components known in advance. These must be communicated to the developers, knowledge of them documented as a requirement, and their features utilized to their full potential.

Section 5. J2EE Deployment Environment

The standard environment for J2EE deployment at HUD currently includes the following products.

	J2EE Tier
	Architectural Component
	Standard Product

	Presentation Tier
(HTML rendering)

	Standard browser

Java Virtual Machine (exception use)
	Netscape Navigator 4.79

Internet Explorer 5.5 SP1

Sun JRE 1.3.1

	Control Tier
	Web Server
	Sun ONE Server 6.5/7.0

	Business Logic Tier
	J2EE Application Server
	Sun ONE Server 6.5/7.0

	Persistence (Enterprise Data) Tier
	Enterprise Data Server
	Oracle 9i Enterprise on UNIX

J2EE Development Environment

J2EE development environment at HUD will be finalized, including CCMB approvals, by July 1, 2003. Participation of the Application Delivery organization is crucial for this process.

	Development Function
	Product Type
	Product

	Modeling
	Modeling Toolset

Model Repository
	TBD (no standard defined)

TBD (no standard defined)

	Coding
	Integrated Development Environment (IDE)
	Sun ONE IDE (recommended for standard)

	Compliance Verification
	J2EE SDK
	Sun J2EE 1.3 SDK

	CM
	CM Repository
	TBD

	Unit Testing
	
	TBD

	Performance Testing
	
	TBD

	Integration Testing
	
	TBD

	Database Development
	Database Design
	Oracle Designer 2000 (pilot use)

Section 6. .Net Application Delivery Framework

Unlike the J2EE Specification, .Net is a suite of shipping products developed and marketed by Microsoft. It evades a simple definition because it is at the same time a development platform, a set of deployment components, and a conceptual framework largely based on the technical ideas of XML and Web Services.

In its core philosophy, .Net is a framework for developing and deploying Internet-based systems, mostly centered on commercial requirements and focusing on interoperability of multiple applications and the universal availability of Microsoft technologies at the user level. It is designed to promote this ubiquitous nature of Microsoft tools, and, unlike J2EE, provides an end-to-end, ready to be used development and deployment toolset.

Technical Architecture

Figure 6-1. .Net Technical Architecture

[image: image5.emf]S

e

r

v

i

c

e

c

r

e

a

t

i

o

n

a

n

d

d

e

p

l

o

y

m

e

n

t

Service delivery

Service framework

Service platform

S

e

r

v

i

c

e

i

n

t

e

g

r

a

t

i

o

n

At the bottom of the stack is the Service Platform, providing operating system, hardware, storage, networking, and the trust and management services for the system.

The Service Framework hosts the process, logic, functions, and state management required by a Web service–based application, and is a full enterprise application server with specific support for Web services.

Service Delivery contains the portal and client services that focus on presentation issues and technologies, including support for all types of devices.

Service Integration provides integration and interoperation between services and present-day operational systems: legacy applications, commercial applications, databases, and other Web services. This is commonly called Enterprise Application Integration (EAI).

Finally, Service Creation provides the tools, process, methodologies and patterns required to design, develop, assemble, manage, deploy and test Web services.

The basic elements of the .Net product suite include:

Smart client software—a set of software products for running a variety of smart clients, from personal computers to mobile devices to set-top appliance controls. The common technological base for all of them is the Windows XP foundation.

XML Web services—software components that allow applications to share data and consume services provided by other applications independent of the underlying platforms or technologies. . Net includes implementations of the latest accepted Web service standards. This is the most appealing part of the .Net framework, assuming that web services prove to be a viable application integration technology.

Enterprise servers—products used to execute different parts of the enterprise application code, including Application Center for deploying Web applications, BizTalk Server for coordinating XML-enabled business processes, and the SQL Server DBMS.

Development tools—include Visual Studio .Net, a single integrated development environment (IDE) for building .Net applications, and a number of .Net programming languages, including Visual Basic .Net, C# (C-Sharp), and others. This support for multiple languages is considered one of the two main competitive advantages of the .Net product suite. In reality, .Net languages differ significantly from their “legacy” equivalents, and require extensive retooling of programmer skills, making this a mixed blessing.

Runtime environment—.Net Framework components including Common Language Runtime (CLR), ASP .Net, and an extensive set of framework class libraries. Availability of CLR brings .Net close to the characteristics of compiled code execution, and is viewed as the other major competitive advantage of the product suite.

Section 7. .Net Implementation Guidelines

1. Use best practices
The packaged nature of the .Net product suite does not relieve application developers from the responsibility to follow best practices and mature system development methodologies. Specifically, .Net development must adhere to the same principles (see Section 1) as any other enterprise development project.

2. Don’t assume ease of integration.
The fact that all .Net products come from the same vendor doesn’t mean that there will be no integration challenges. Microsoft has always relied on the “good enough” model of product development, often offloading the burden of beta-testing on end users and early adopters. .Net is a new product suite, effectively, a Version One product.

3. Verify developers’ qualifications.
The .Net framework is an extremely complex set of tools and technologies requiring extremely high degree of technical proficiency for successful system implementation. Proficiency with previous Microsoft technologies (MSCE, MSSD, etc.) does not ensure expertise in .Net products.

4. Factor training into project costs.
.Net languages differ significantly from their “legacy” predecessors, which may require “on-the-job” training for developers, designers, and project managers, increasing project time, cost and risk.

5. Don’t assume easy migration from “legacy” Microsoft systems.
.Net design philosophy, based on XML and Web services, differs dramatically from previous Microsoft implementations based on static components and explicit object definitions (COM+, Visual Basic, MFC/C++). Migrating existing code base to the .Net specification will require extensive re-engineering/redesign efforts. While Microsoft somewhat eases this with the inclusion of migration tools in Visual Studio .Net, lack of XML standards and the immaturity of Web services technologies represent significant risk.

6. Use Web services judiciously.
Don’t overuse Web services outside of a proven functional need to interface with a heterogeneous and/or unknown application interface. As with any fashionable new technology, developers will over-recommend its use.

7. Start .Net implementations with new development, not with perfective maintenance of existing Microsoft systems.
8. Watch for security vulnerabilities.
While significant improvements have been achieved in recent months, the Microsoft platforms security track record is poor, and relies on after-the-fact patches and hot fixes that need to be actively researched and applied.

9. Study and use platform advantages.
Avoid applying old best practices to the new platform—technical, functional and performance profile of .Net products differ significantly from previous Microsoft tools, and require adequate infrastructure to implement. Specific configurations in areas like Active Directory Services, server process/thread management, memory availability and management, network throughput and performance will be required to ensure optimal system performance.

Section 8. .Net Deployment Environment

	.Net Tier
	Architectural Component
	Standard Product

	Service delivery

	Standard browser

	Internet Explorer 6.0 SP1 (minimum supported)

	Service framework
	Web/Application Server
	MSFT Application Center

MSIE

	Service platform
	Operating system
	MSFT Windows 2000 Server SP2

	Data service
	RDBMS
	MSFT SQL Server 2000 SP5

.Net Development Environment

	Development Function
	Product Type
	Product

	Modeling
	Modeling Toolset

Model Repository
	TBD

TBD

	Coding
	Integrated Development Environment (IDE)
	MSFT Visual Studio .Net

	Configuration Management
	CM Repository
	TBD

	Database
	RDBMS
	MSFT SQL Server 2000 SP5

� EMBED Visio.Drawing.6 ���

� HUD’s Systems Development Methodology (SDM) will be updated to include EA priorities and current best practices.

PAGE
12

_1110608941.vsd
text�

�

Cluster�

�

�

�

�

Drag the side handles to change the width of the text block.�

Client�

Browser�

HTML, JavaScript, Applets�

Web Server�

HTTP Server�

Servlet Engine�

Java Server Pages�

Controller Servlet�

Presentation
Logic�

Application Server�

Session EJB�

Entity EJB�

JDBC�

Data Server�

RDBMS�

Business �Logic�

Business�Processes�

Business�Models�

_1110609346.vsd
Data�

Cluster�

text�

Internet�

 Enterprise Intranet�

Web�browser�

Web�browser�

Web�browser�

Web�browser�

Web�browser�

Oracle�

Sybase/
SQL Svr.�

DB2�

J2EE Server
Sun ONE�

Servlet�

Servlet�

Servlet�

Web
Server�

HTTPS�

HTTPS�

HTTP�

HTTP�

HTTP�

LDAP�

DNS�

�

�

�

�

�

�

�

�

�

�

Message
service�

Transaction
service�

J2EE Server
Sun ONE�

EJB
Bean�

EJB
Bean�

EJB
Bean�

EJB
Bean�

Java
client�

Java
client�

RMI/IIOP�

RMI/IIOP�

JDBC�

JNDI�

RMI/IIOP�

Data Servers�

Name Servers�

Java Distributed Objects�

Legacy Distributed Objects�

Other Enterprise Services�

CORBA�

JMS�

JTA�

JTA�

JTA�

CORBA�

RMI/IIOP�

JNDI�

JDBC�

_1109007331.vsd
text�

Service creation and deployment�

Service delivery�

Service framework�

Service platform�

Service integration�

